login
A064779
Primes such that the sum of their digits and the sum of the reciprocals of their digits is also prime.
1
11, 2441, 4241, 4421, 12163, 12613, 13313, 13331, 16231, 16363, 16633, 21163, 21613, 26113, 31663, 32233, 32323, 32611, 33113, 33223, 33311, 48281, 48821, 61231, 61363, 62131, 62311, 63211, 63361, 88241
OFFSET
1,1
COMMENTS
Zero, five, and seven never appear as a digit of any of the terms of this sequence. - Harvey P. Dale, Jul 17 2013
LINKS
MATHEMATICA
f[ n_ ] := 1/n a[ n_ ] := Apply[ Plus, Map[ f, IntegerDigits[ n ] ] ] b[ n_ ] := Apply[ Plus, IntegerDigits[ n ] ] Select[ Range[ 100000 ], FreeQ[ IntegerDigits[ # ], 0 ] && PrimeQ[ a[ # ] ] && PrimeQ[ b[ # ] ] && PrimeQ[ # ] & ]
sdpQ[n_]:=Module[{idn=IntegerDigits[n]}, Min[idn]>0&&And@@PrimeQ[{Total[ idn], Total[ 1/idn]}]]; Select[Prime[Range[10000]], sdpQ] (* Harvey P. Dale, Jul 17 2013 *)
CROSSREFS
Cf. A034708.
Sequence in context: A085878 A238633 A266815 * A239897 A138075 A222315
KEYWORD
base,nonn
AUTHOR
Santi Spadaro, Oct 19 2001
STATUS
approved