login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064725
Sum of primes dividing Fibonacci(n) (with repetition).
3
0, 0, 2, 3, 5, 6, 13, 10, 19, 16, 89, 14, 233, 42, 68, 57, 1597, 42, 150, 60, 436, 288, 28657, 46, 3011, 754, 181, 326, 514229, 114, 2974, 2264, 19892, 5168, 141979, 160, 2443, 9499, 135956, 2228, 62158, 680, 433494437, 641, 109526, 29257, 2971215073
OFFSET
1,3
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..350 from Harry J. Smith)
EXAMPLE
a(12) = 14 because Fibonacci(12) = 144 = 2^4*3^2 and the sum of the prime divisors with repetition is 4*2 + 2*3 = 14.
MAPLE
with (numtheory):with(combinat, fibonacci):
sopfr:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]:
add (e[j][1]*e[j][2], j=1..nops(e)) end:
seq (sopfr(n), n=1..100); # Michel Lagneau, Nov 13 2012
# second Maple program:
a:= n-> add(i[1]*i[2], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]):
seq(a(n), n=1..47); # Alois P. Heinz, Sep 03 2019
MATHEMATICA
fiboPrimeFactorSum[n_] := Plus @@ Times @@@ FactorInteger@ Fibonacci[n]; fiboPrimeFactorSum[1] = 0; Array[fiboPrimeFactorSum, 60] (* Michel Lagneau, Nov 13 2012 *)
PROG
(PARI) sopfr(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) }
{ for (n = 0, 350, write("b064725.txt", n, " ", sopfr(fibonacci(n))) ) } \\ Harry J. Smith, Sep 23 2009
CROSSREFS
Cf. A000045, A001414, A080648 (without repetition).
Sequence in context: A358290 A098930 A075372 * A301761 A253644 A100330
KEYWORD
nonn
AUTHOR
Jason Earls, Oct 16 2001
STATUS
approved