login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A Beatty sequence for 2^i + 2^(-i) where i = sqrt(-1).
2

%I #12 Jul 24 2023 00:05:10

%S 1,3,4,6,7,9,10,12,13,15,16,18,20,21,23,24,26,27,29,30,32,33,35,36,38,

%T 40,41,43,44,46,47,49,50,52,53,55,56,58,60,61,63,64,66,67,69,70,72,73,

%U 75,76,78,80,81,83,84,86,87,89,90,92,93,95,96,98,100,101,103,104,106

%N A Beatty sequence for 2^i + 2^(-i) where i = sqrt(-1).

%C 2^i + 2^-i ~= 1.53847780272794425315665998732254140... ~= 20/13.

%H Harry J. Smith, <a href="/A064717/b064717.txt">Table of n, a(n) for n=1,...,2000</a>

%t a = Chop[ N[ 2^I + 2^-I, 36], 10^-40]; Table[ Floor[n*a], {n, 1, 75} ]

%o (PARI) { default(realprecision, 100); b=real(2^I + 2^-I); for (n = 1, 2000, write("b064717.txt", n, " ", floor(n*b)) ) } \\ _Harry J. Smith_, Sep 23 2009

%Y Cf. A064718, A237192.

%K easy,nonn

%O 1,2

%A _Robert G. Wilson v_, Oct 13 2001