login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the sum of divisors of k and the product of divisors of k are both perfect squares.
3

%I #31 Jan 07 2020 09:07:12

%S 1,22,66,70,81,94,115,119,170,210,214,217,265,282,310,322,343,345,357,

%T 364,382,385,472,497,510,517,527,642,651,679,710,742,745,782,795,820,

%U 862,884,889,930,935,966,970,1029,1066,1080,1092,1146,1155,1174

%N Numbers k such that the sum of divisors of k and the product of divisors of k are both perfect squares.

%H Amiram Eldar, <a href="/A064710/b064710.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith)

%t psQ[n_]:=Module[{d=Divisors[n]},IntegerQ[Sqrt[Total[d]]] && IntegerQ[ Sqrt[Times@@d]]]; Select[Range[1200],psQ] (* _Harvey P. Dale_, Mar 07 2012 *)

%o (PARI) pd(n) = n^(numdiv(n)/2);

%o for(n=1,2000, if(issquare(sigma(n)) && issquare(pd(n)), print1(n,", ")))

%o (PARI) pd(n)= { d=numdiv(n); if (d%2, round(sqrt(n))^d, n^(d/2)) }

%o { n=0; for (m=1, 10^9, if (issquare(sigma(m)) && issquare(pd(m)), write("b064710.txt", n++, " ", m); if (n==1000, break)) ) } \\ _Harry J. Smith_, Sep 23 2009

%o (Sage) [n for n in (1..100000) if sigma(n).is_square()and prod(divisors(n)).is_square()] # _Giuseppe Coppoletta_, Dec 16 2014

%Y Cf. A007955, A000203.

%K easy,nonn

%O 1,2

%A _Jason Earls_, Oct 13 2001

%E Corrected by _Harvey P. Dale_, Oct 23 2001