login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2^n)^12*((2^n)^2-1)*((2^n)^6-1)*((2^n)^8 + (2^n)^4+1).
4

%I #23 Dec 22 2024 21:30:38

%S 0,211341312,67802350642790400,19045158721552047314829312,

%T 5172093060532095860985478879641600,

%U 1392436772074860374668712252110467615424512,374053097594236786223942368917529841587940071833600,100427498158122178683906767552010902133066063134008553766912,26959535297288219669523507545964171915704566051174598345329370726400

%N a(n) = (2^n)^12*((2^n)^2-1)*((2^n)^6-1)*((2^n)^8 + (2^n)^4+1).

%D R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.

%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.

%H Harry J. Smith, <a href="/A064588/b064588.txt">Table of n, a(n) for n = 0..50</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (357912576, -25619989209808896, 436628173228375692804096, -1838084202651691394631840301056, 1927370980879699955817476575520096256, -503398010432197925784784284250454618013696, 32477194699655007703444278420761908023599824896, -498857322545357921467016345185865338049043131006976, 1532495540865888858358347027150309183618739122183602176).

%t Table[With[{c=2^n},c^12 (c^2-1)(c^6-1)(c^8+c^4+1)],{n,0,10}] (* _Harvey P. Dale_, Oct 23 2024 *)

%o (PARI) a(n) = { my(p=(2^n)^2); p^6*(p - 1)*(p^3 - 1)*(p^4 + p^2 + 1) } \\ _Harry J. Smith_, Sep 19 2009

%o (Python)

%o def A064588(n): return (m:=1<<(n<<1))*(m*(m*(m*(m*(m*(m*(m-1)+1)-2)+2)-2)+1)-1)+1<<12*n # _Chai Wah Wu_, Aug 20 2024

%Y Cf. A037253, A064587, A064589.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Oct 17 2001