login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064571
Binomial transform of (3n)!.
0
1, 7, 733, 365059, 480457465, 1310073012031, 6410226944228437, 51135786265589035963, 620857308610340190325489, 10894455325845833715898309495, 265361776433005578042408841530061, 8686235999260031219427964764144394867, 372097544110411566152076374938114937481193
OFFSET
0,2
COMMENTS
From Peter Bala, Mar 20 2022: (Start)
The congruence a(n+k) == a(n) (mod k) holds for all n and k.
It follows that the sequence obtained by taking a(n) modulo a fixed positive integer k is periodic with exact period dividing k. For example, taken modulo 5 the sequence becomes [2, 3, 4, 0, 1, 2, 3, 4, 0, 1, ...], a purely periodic sequence with period 5.
More generally, the same property holds for any sequence with an e.g.f. of the form F(x)*exp(x*G(x)), where F(x) and G(x) are power series with integer coefficients and G(0) = 1 (see Bala, Theorem 1). (End)
FORMULA
In Maple notation: a(n) = hypergeom([1, 1/3, 2/3, -n], [], -27), n = 0, 1, ....
a(n) = Integral_{x = 0..infinity} (1+x^3)^n*exp(-x) dx. - Gerald McGarvey, Oct 12 2007
From Vaclav Kotesovec, Oct 30 2017: (Start)
a(n) = (27*n^3 - 27*n^2 + 6*n + 1)*a(n-1) - 3*(n-1)*(27*n^2 - 45*n + 20)*a(n-2) + 27*(n-2)*(n-1)*(3*n - 4)*a(n-3) - 27*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ sqrt(2*Pi) * (3*n)^(3*n + 1/2) / exp(3*n). (End)
From Peter Bala, Mar 20 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*(3*k)!.
a(n) = 1 + 6*n*(1 + 60*(n-1)*(1 + 168*(n-2)*(1 + 330*(n-3)*(1 + 546*(n-4)*(1 + ...*(1 + (3*(3*m+1)*(3*m+2))*(n-m)*(1 + ...))))))).
a(n) == 1 (mod 6).
O.g.f: Sum_{k >= 0} (3*k)!*x^k/(1 - x)^(k+1).
E.g.f.: exp(x)*Sum_{k >= 0} (3*k)!/k!*x^k. (End)
MATHEMATICA
Table[Sum[Binomial[n, k] * (3*k)!, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Oct 30 2017 *)
PROG
(PARI) for(n=0, 12, print1(round(intnum(x=0, 999, exp(-x)*(1+x^3)^n)), ", ")) - Gerald McGarvey, Oct 12 2007
CROSSREFS
Sequence in context: A067448 A249897 A249834 * A111476 A246107 A156618
KEYWORD
nonn,easy
AUTHOR
Karol A. Penson, Sep 20 2001
EXTENSIONS
Corrected and extended by N. J. A. Sloane, Oct 29 2006
STATUS
approved