%I #5 Jul 13 2023 18:56:02
%S 1,2,3,5,7,10,13,19,26,36,51,69,94,130,188,261,366,514,710,993,1399,
%T 1995,2779,3912,5490,7723,10848,15230,21457,30165,42401,59718,83808,
%U 117844,165932,233358,328316,461885,650105,915243,1287795,1812815,2552260,3593697
%N Form a conjugate partition of row with 1+1+1 in first row. all other rows are the union of their parents. a(n) = number of types of piles in the n-th row.
%C The n-th row sum is equal to 3*2^(n-1).
%C The largest part of the n-th row is A000204(n).
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a064/A064480.java">Java program</a> (github)
%e Start with 1+1+1 from which a(1)=1.
%e The conjugate of 1+1+1 is 3, giving the union 3+1+1+1, and a(2)=2.
%e The conjugate of 3+1+1+1 is 4+1+1, giving the union 4+3+1+1+1+1+1, and a(3)=3.
%e The conjugate of 4+3+1+1+1+1+1 is 7+2+2+1, giving the union 7+4+3+2+2+1+1+1+1+1+1, and a(4)=5.
%Y Cf. A000700, A000701, A000204.
%K nonn
%O 1,2
%A _Naohiro Nomoto_, Feb 14 2002
%E More terms from _Sean A. Irvine_, Jul 13 2023