login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

EKG sequence (or ECG sequence): a(1) = 1; a(2) = 2; for n > 2, a(n) = smallest number not already used which shares a factor with a(n-1).
364

%I #171 Sep 28 2023 02:06:47

%S 1,2,4,6,3,9,12,8,10,5,15,18,14,7,21,24,16,20,22,11,33,27,30,25,35,28,

%T 26,13,39,36,32,34,17,51,42,38,19,57,45,40,44,46,23,69,48,50,52,54,56,

%U 49,63,60,55,65,70,58,29,87,66,62,31,93,72,64,68,74,37,111,75,78,76,80,82

%N EKG sequence (or ECG sequence): a(1) = 1; a(2) = 2; for n > 2, a(n) = smallest number not already used which shares a factor with a(n-1).

%C Locally, the graph looks like an EKG (American English) or ECG (British English).

%C Calculating the square of A064413 and plotting the results shows the EKG behavior even more dramatically - see A104125. - _Parthasarathy Nambi_, Jan 27 2005

%C Theorem: (1) Every number appears exactly once: this is a permutation of the positive numbers. - J. C. Lagarias, E. M. Rains, _N. J. A. Sloane_, Oct 03 2001

%C The permutation has cycles (1) (2) (3, 4, 6, 9, 10, 5) (..., 20, 18, 12, 7, 14, 13, 28, 26, ...) (8) ...

%C Theorem: (2) The primes appear in increasing order. - J. C. Lagarias, E. M. Rains, _N. J. A. Sloane_, Oct 03 2001

%C Theorem: (3) When an odd prime p appears it is immediately preceded by 2p and followed by 3p. - Conjectured by Lagarias-Rains-Sloane, proved by Hofman-Pilipczuk.

%C Theorem: (4) Let a'(n) be the same sequence but with all terms p and 3p (p prime) changed to 2p (see A256417). Then lim a'(n)/n = 1, i.e., a(n) ~ n except for the values p and 3p for p prime. - Conjectured by Lagarias-Rains-Sloane, proved by Hofman-Pilipczuk.

%C Conjecture: If a(n) != p, then almost everywhere a(n) > n. - _Thomas Ordowski_, Jan 23 2009

%C Conjecture: lim #(a_n > n) / n = 1, i.e., #(a_n > n) ~ n. - _Thomas Ordowski_, Jan 23 2009

%C Conjecture: A term p^2, p a prime, is immediately preceded by p*(p+1) and followed by p*(p+2). - _Vladimir Baltic_, Oct 03 2001. This is false, for example the sequence contains the 3 terms p*(p+2), p^2, p*(p+3) for p = 157. - Eric Rains

%C Theorem: If a(k) = 3p, then |{a(m) : a(m>k) < 3p}| = 3p - k. Proof: If a(k) = 3p, then all a(m<k) < 3p, all a(m>k) > p and |{a(m) : a(m>k) < 3p}| = 3p - k. - _Thomas Ordowski_, Jan 22 2009

%C Let ...,a_i,...,2p,p,3p,...,a_j,... There does not exist a_i > 3p. There does not exist a_j < p. - _Thomas Ordowski_, Jan 20 2009

%C Let...,a,...,2p,p,3p,...,b,... All a<3p and b>p. #(a>2p) <= #(b<2p). - _Thomas Ordowski_, Jan 21 2009

%C If a(k)=3p then |{a(m):a(m>k)<3p}|=3p-k. - _Thomas Ordowski_, Jan 22 2009

%C GCD(a(n),n) = A247379(n). - _Reinhard Zumkeller_, Sep 16 2014

%C If the definition is changed to require that the GCD of successive terms be a prime power > 1, the sequence stays the same until a(578)=620, at which point a(579)=610 has GCD = 10 with the previous term. - _N. J. A. Sloane_, Mar 30 2015

%C From _Michael De Vlieger_, Dec 06 2021: (Start)

%C For prime p > 2, we have the chain {j : 2|j} -> 2p -> p -> 3p -> {k : 3|k}. The term j introducing 2p must be even, since 2p is an even squarefree semiprime proved by Hofman-Pilipczuk to introduce p itself. Hence no term a(i) such that p | a(i) exists in the sequence for i < n-1, where a(n) = p, leaving 2|j. Similarly, the term k following 3p must be divisible by 3 since the terms mp that are not coprime to p (thus implying p | mp) have m >= 4, thereby large compared to numbers k such that 3|k that belong to the cototient of 3p. For the chain {4, 6, 3, 9, 12}, the term 12 following 3p indeed is 4p, but p = 3; this is the only case of 4p following 3p in the sequence. As a consequence, for i > 1, A073734(A064955(i)-1) = 2 and A073734(A064955(i)+2) = 3.

%C For Fermat primes p, we have the chain {j : 2|j} -> 2^e-> {2p = 2^e + 2} -> {p = 2^(e-1) + 1} -> 3p -> {k : 3|k}.

%C a(3) = 4 = 2^2, a(5) = 3 = 2^1 + 1;

%C a(8) = 8 = 2^3, a(10) = 5 = 2^2 + 1;

%C a(31) = 32 = 2^5, a(33) = 17 = 2^4 + 1;

%C a(485) = 512 = 2^9, a(487) = 257 = 2^8 + 1;

%C a(127354) = 131072 = 2^17, a(127356) = 65537 = 2^16 + 1.

%C (End)

%D N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

%H Zak Seidov, <a href="/A064413/b064413.txt">Table of n, a(n) for n = 1..10000</a>

%H David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Sloane/sloane9.html">J. Int. Seq. 18 (2015) 15.6.7</a>.

%H Michael De Vlieger, <a href="/A064413/a064413.png">Annotated plot of a(n)</a> for n=1..120, showing prime p in red, 2p in blue, 3p in green, and other terms in gray.

%H Michael De Vlieger, <a href="/A064413/a064413_1.png">Partially annotated log-log scatterplot of a(n)</a> for n=1..1024, showing prime p in red, 2p in blue, 3p in green, and other terms in gray. This plot exhibits three quasi-linear striations, the densest contains both 2p and all "gray" terms outside of the first dozen or so terms in the sequence.

%H Michael De Vlieger, <a href="/A064413/a064413.txt">Table of n, a(n)</a> for n = 1..262144.

%H Diophante.fr, <a href="http://www.diophante.fr/problemes-par-themes/logique/e1-suites-logiques/2254-e121-une-sequence-cordiale"> Les Récreations Mathématiques: E121. Une séquence cordiale</a>.

%H Gordon Hamilton, <a href="http://www.youtube.com/watch?v=yd2jr30K2R4">The EKG Sequence and the Tree of Numbers</a>

%H Gordon Hamilton, <a href="http://m.youtube.com/watch?v=Y2KhEW9CSOA">Untitled video related to previous video</a>

%H Piotr Hofman and Marcin Pilipczuk, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Hofman/hofman1.html">A few new facts about the EKG sequence</a>, J. Integer Seqs., 11 (2008), Article 08.4.2.

%H James Keener, <a href="http://www.math.utah.edu/~keener/lectures/maw/index.html">Mathematics of EKG</a> [Refers to EKGs found in hospitals, included for comparison.]

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0204011">The EKG sequence</a>, arXiv:math/0204011 [math.NT], 2002.

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.3/Lagarias437_446.pdf">The EKG Sequence</a>, Exper. Math. 11 (2002), 437-446.

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="/A064413/a064413_1.pdf">Plot of a(1) to a(100), with successive points joined by lines.</a>

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="/A064413/a064413_2.pdf">Terms 800 to 1000, with successive points joined by lines.</a>

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="/A064413/a064413_3.pdf">The first 1000 terms (represented by dots), successive points not joined.</a>

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="/A064413/a064413_4.pdf">The first 10000 terms (represented by dots), successive points not joined.</a>

%H J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="/A064413/a064413_5.pdf">The sequence smoothed by replacing a(n)=p or 3p, p prime > 2, by a(n) = 2p.</a>

%H Ivars Peterson, <a href="https://www.sciencenews.org/article/ekg-sequence">The EKG Sequence</a>

%H E. M. Rains, <a href="/A064413/a064413.c.txt">C program</a>

%H N. J. A. Sloane, <a href="http://neilsloane.com/doc/g4g7.pdf">Seven Staggering Sequences</a>.

%H N. J. A. Sloane, <a href="/A195264/a195264.pdf">Confessions of a Sequence Addict (AofA2017)</a>, slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.

%H N. J. A. Sloane, <a href="https://vimeo.com/457349959">Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows</a>, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk).

%H N. J. A. Sloane, <a href="https://vimeo.com/704569041/4ffa06b95e">The On-Line Encyclopedia of Integer Sequences: An illustrated guide with many unsolved problems</a>, Guest Lecture given in Doron Zeilberger's Experimental Mathematics Math640 Class, Rutgers University, Spring Semester, Apr 28 2022: <a href="https://sites.math.rutgers.edu/~zeilberg/EM22/C27.pdf">Slides</a>; <a href="http://NeilSloane.com/doc/Math640.04.2022.pdf">Slides (an alternative source)</a>.

%H N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 16.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EKGSequence.html">EKG Sequence</a>

%H <a href="/index/Ed#EKG">Index entries for sequences related to EKG sequence</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = smallest number not already used such that gcd(a(n), a(n-1)) > 1.

%F In Lagarias-Rains-Sloane (2002), it is conjectured that almost all a(n) satisfy the asymptotic formula a(n) = n (1+ 1/(3 log n)) + o(n/log n) as n -> oo and that the exceptional terms when the sequence is a prime or 3 times a prime p produce the spikes in the sequence. See the paper for a more precise statement of the conjecture. - _N. J. A. Sloane_, Mar 07 2015

%e a(2) = 2, a(3) = 4 (gcd(2,4) = 2), a(4) = 6 (gcd(4,6) = 2), a(5) = 3 (gcd(6,3) = 3), a(6) = 9 (6 already used so next number which shares a factor is 9 since gcd(3,9) = 3).

%p h := array(1..20000); a := array(1..10000); maxa := 300; maxn := 2*maxa; for n from 1 to maxn do h[n] := -1; od: a[1] := 2; h[2] := 1; c := 2; for n from 2 to maxa do for m from 2 to maxn do t1 := gcd(m,c); if t1 > 1 and h[m] = -1 then c := m; a[n] := c; h[c] := n; break; fi; od: od: ap := []: for n from 1 to maxa do ap := [op(ap),a[n]]; od: hp := []: for n from 2 to maxa do hp := [op(hp),h[n]]; od: convert(ap,list); convert(hp,list); # this is very crude!

%p N:= 1000: # to get terms before the first term > N

%p V:= Vector(N):

%p A[1]:= 1:

%p A[2]:= 2: V[2]:= 1:

%p for n from 3 do

%p S:= {seq(seq(k*p,k=1..N/p),p=numtheory:-factorset(A[n-1]))};

%p for s in sort(convert(S,list)) do

%p if V[s] = 0 then

%p A[n]:= s;

%p break

%p fi

%p od;

%p if V[s] = 1 then break fi;

%p V[s]:= 1;

%p od:

%p seq(A[i],i=1..n-1); # _Robert Israel_, Jan 18 2016

%t maxN = 100; ekg = {1, 2}; unused = Range[3, maxN]; found = True; While[found, found = False; i = 0; While[ !found && i < Length[unused], i++; If[GCD[ekg[[-1]], unused[[i]]] > 1, found = True; AppendTo[ekg, unused[[i]]]; unused = Delete[unused, i]]]]; ekg (* Ayres *)

%t ekGrapher[s_List] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++ ]; Append[s, k]]; Nest[ekGrapher, {1, 2}, 71] (* _Robert G. Wilson v_, May 20 2009 *)

%o (Haskell)

%o import Data.List (delete, genericIndex)

%o a064413 n = genericIndex a064413_list (n - 1)

%o a064413_list = 1 : f 2 [2..] where

%o ekg x zs = f zs where

%o f (y:ys) = if gcd x y > 1 then y : ekg y (delete y zs) else f ys

%o -- _Reinhard Zumkeller_, May 01 2014, Sep 17 2011

%o (PARI)

%o a1=1; a2=2; v=[1,2];

%o for(n=3,100,a3=if(n<0,0,t=1;while(vecmin(vector(length(v),i,abs(v[i]-t)))*(gcd(a2,t)-1)==0,t++);t);a2=a3;v=concat(v,a3););

%o a(n)=v[n];

%o /* _Benoit Cloitre_, Sep 23 2012 */

%o (Python)

%o from fractions import gcd

%o A064413_list, l, s, b = [1,2], 2, 3, {}

%o for _ in range(10**5):

%o ....i = s

%o ....while True:

%o ........if not i in b and gcd(i,l) > 1:

%o ............A064413_list.append(i)

%o ............l, b[i] = i, True

%o ............while s in b:

%o ................b.pop(s)

%o ................s += 1

%o ............break

%o ........i += 1 # _Chai Wah Wu_, Dec 08 2014

%Y A073734 gives GCD's of successive terms.

%Y See A064664 for the inverse permutation. See A064665-A064668 for the first two infinite cycles of this permutation. A064669 gives cycle representatives.

%Y See A064421 for sequence giving term at which n appears.

%Y See A064424, A074177 for records.

%Y Cf. A064955 & A352194 (prime positions), A195376 (parity), A064957 (positions of odd terms), A064953 (positions of even terms), A064426 (first differences).

%Y See A169857 and A119415 for the effect of changing the start.

%Y Cf. A240024 (nonprime version).

%Y Cf. A152458 (fixed points), A247379, A247383.

%Y For other initial terms, see A169841, A169837, A169843, A169855, A169849.

%Y A256417 is a smoothed version.

%Y See also A255582, A256466, A257218, A257311-A257315, A257405, A253279 (two-dimensional analog).

%Y See also A276127.

%K nonn,nice,easy,look,hear

%O 1,2

%A Jonathan Ayres (Jonathan.ayres(AT)btinternet.com), Sep 30 2001

%E More terms from _Naohiro Nomoto_, Sep 30 2001

%E Entry extensively revised by _N. J. A. Sloane_, Oct 10 2001