OFFSET
1,2
COMMENTS
Call m exceptional if the binary cyclic code of length 2^k-1 with zeros w and w^m (w primitive in GF(2^k)) is double-error-correcting for infinitely many k. It is conjectured that this sequence (with the initial terms 1 and 2 omitted) gives all odd exceptional m's.
REFERENCES
J. F. Dillon, Geometry, codes and difference sets: exceptional connections, in Codes and designs (Columbus, OH, 2000), pp. 73-85, de Gruyter, Berlin, 2002.
LINKS
Robert Israel, Table of n, a(n) for n = 1..4978
H. Janwa, G. McGuire and R. M. Wilson, Double-error-correcting codes and absolutely irreducible polynomials over GF(2), J. Algebra, 178 (1995), 665-676.
FORMULA
Conjectures from Colin Barker, Mar 14 2018: (Start)
G.f.: x*(1 + x + x^2 - 4*x^3 - 2*x^4 - 2*x^5 + 8*x^8) / ((1 - x)*(1 - 2*x^3)*(1 - 4*x^3)).
a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - 8*a(n-6) + 8*a(n-7) for n>7.
(End)
MAPLE
N:= 10^11: # to get all terms <= N
sort([1, seq(2^n+1, n=0..ilog2(N-1)), seq(4^n-2^n+1, n=2..floor(log[2]((sqrt(4*N-3)+1)/2)))]); # Robert Israel, Mar 14 2018
MATHEMATICA
With[{nn=40}, Take[Flatten[Table[{2^n+1, 4^n-2^n+1}, {n, 0, nn}]]//Union, 40]] (* Harvey P. Dale, Jul 26 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 28 2001
STATUS
approved