Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:45:04
%S 3,4,36,864,40320,3110400,359251200,58118860800,12553673932800,
%T 3492203839488000,1216451004088320000,518769566666588160000,
%U 265906457885674045440000,161316584450642254233600000
%N a(n) = 6*(2*n)!/(n+2).
%C All terms, except a(0) and a(1), are integer multiples of 6.
%H Harry J. Smith, <a href="/A064335/b064335.txt">Table of n, a(n) for n = 0..100</a>
%F a(n) = Integral_{x=0..oo} (x^n*(exp(-sqrt(x)) * (-1+sqrt(x)+2/sqrt(x)) + x*Ei(-sqrt(x))) ), n=0, 1..., where Ei(y) is the exponential integral. Representation as the n-th moment of a positive function on a positive half-axis, in Maple notation. This representation is unique.
%t Table[6*(2*n)!/(n+2), {n,0,20}] (* _G. C. Greubel_, May 03 2019 *)
%o (PARI) { s=6; for (n=0, 100, if (n, s*=2*n*(2*n - 1)); a=s/(n + 2); write("b064335.txt", n, " ", a) ) } \\ _Harry J. Smith_, Sep 12 2009
%o (PARI) a(n) = 6*(2*n)!/(n+2); \\ _Michel Marcus_, Jun 24 2018
%o (Magma) [6*Factorial(2*n)/(n+2): n in [0..20]]; // _G. C. Greubel_, May 03 2019
%o (Sage) [6*factorial(2*n)/(n+2) for n in (0..20)] # _G. C. Greubel_, May 03 2019
%o (GAP) List([0..20], n-> 6*Factorial(2*n)/(n+2)) # _G. C. Greubel_, May 03 2019
%Y Cf. A060593.
%K nonn
%O 0,1
%A _Karol A. Penson_, Sep 13 2001