login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n-1)^3*(n-2)^3*(n-3).
2

%I #23 Dec 28 2024 11:50:40

%S 0,0,0,0,864,17280,144000,756000,2963520,9483264,26127360,64152000,

%T 143748000,298995840,584648064,1085142240,1926288000,3290112000,

%U 5433384960,8710395264,13600573920,20741616000,30968784000,45361118880,65295324864,92508134400,129168000000

%N a(n) = n*(n-1)^3*(n-2)^3*(n-3).

%H Harry J. Smith, <a href="/A064321/b064321.txt">Table of n, a(n) for n = 0..400</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F G.f.: -288*x^4*(3*x^4+33*x^3+68*x^2+33*x+3) / (x-1)^9. - _Colin Barker_, Sep 14 2014

%e a(4) = 4*(3^3)*(2^3)*1 = 4*27*8*1 = 864.

%p A064321:=n->n*(n-1)^3*(n-2)^3*(n-3); seq(A064321(n), n=0..50); # _Wesley Ivan Hurt_, Feb 02 2014

%t Table[n (n - 3) (n - 1)^3*(n - 2)^3, {n, 0, 50}] (* _Wesley Ivan Hurt_, Feb 02 2014 *)

%o (PARI) a(n) = { n*(n - 1)^3*(n - 2)^3*(n - 3) } \\ _Harry J. Smith_, Sep 11 2009

%o (PARI) concat([0,0,0,0], Vec(-288*x^4*(3*x^4+33*x^3+68*x^2+33*x+3)/(x-1)^9 + O(x^100))) \\ _Colin Barker_, Sep 14 2014

%Y Cf. A000027, A002378, A047928, A064319, A064320.

%K nonn,easy

%O 0,5

%A _Henry Bottomley_, Sep 10 2001