Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 15 2019 07:55:36
%S 1,0,0,1,4,12,86,696,6150,61760,673256,8137200,105074420,1479237312,
%T 22077680616,354753059584,6007578698408,108500041654272,
%U 2055204828592832,41215470268919040,863378484993573840,19036646809582054400,436944006380312366240
%N Number of nonequivalent solutions to the order n checkerboard problem up to reflection and rotation: place n pieces on an n X n board so there is exactly one piece in each row, column and main diagonal.
%C For even n>=4: A007016(n) = 8*A064280(n).
%C For even n, the diagonals do not intersect and there can be no symmetrical solutions. For odd n, a symmetrical solution will have a rook on the central square and the remaining n-1 rooks must be placed so as to avoid the main diagonals. See A292080 for information on counting non-attacking rook configurations with no rook on either main diagonal. - _Andrew Howroyd_, Sep 12 2017
%H Andrew Howroyd, <a href="/A064280/b064280.txt">Table of n, a(n) for n = 1..100</a>
%H Geoffrey Chase, <a href="https://archive.org/stream/creativecomputing-1980-01/Creative_Computing_v06_n01_1980_Jan#page/n125/mode/2up">Checkerboard Problem Solved</a>, Creative Computing 6(1), Jan 1980, 122.
%H Bahairiv Joshi, <a href="https://archive.org/stream/creativecomputing-1980-10/Creative_Computing_v06_n10_1980_October#page/n125/mode/2up">Unique Solutions to the Checkerboard Problem</a>, Creative Computing 6(10), Oct 1980, 124-125.
%H Abijah Reed, <a href="https://archive.org/stream/creativecomputing-1980-05/Creative_Computing_v06_n05_1980_May#page/n99/mode/2up">Comments on Checkerboard Problem Solved</a>, Creative Computing 6(5), May 1980, 94.
%F a(2n) = A007016(2n) / 8, a(2n+1) = (A007016(2n+1) + 2^n * A000166(n) + 2*A037224(2*n) + 2*A053871(n)) / 8 for n > 0. - _Andrew Howroyd_, Sep 12 2017
%e The 4 X 4 solution is unique, up to equivalence, with pieces at (1,1), (2,3), (3,4) and (4,2).
%t sf = Subfactorial;
%t x[n_] := x[n] = Integrate[If[EvenQ[n], (x^2 - 4*x + 2)^(n/2), (x - 1)*(x^2 - 4*x + 2)^((n - 1)/2)]/E^x, {x, 0, Infinity}];
%t F[n_ /; EvenQ[n]] := With[{m = n/2}, m*(x[2*m] - (2*m - 3)*x[2*m - 1])];
%t F[n_ /; OddQ[n]] := With[{m = (n - 1)/2}, (2*m + 1)*x[2*m] + 3*m*x[2*m - 1] - 2*m*(m - 1)*x[2*m - 2]];
%t d[n_] := (-1)^n HypergeometricPFQ[{1/2, -n}, {}, 2];
%t R[n_] := If[OddQ[n], 0, If[n == 0, 1, (n - 1)!*2/(n/2 - 1)!]];
%t a[1] = 1; a[n_] := With[{m = Quotient[n, 2]}, (F[n] + If[EvenQ[n], 0, 2^m * sf[m] + 2*R[m] + 2*d[m] + 2*Boole[m == 0]])/8];
%t Array[a, 30] (* _Jean-François Alcover_, Sep 15 2019 *)
%o (PARI) \\ here sf is A000166, F is A007016, D is A053871, R(n) is A037224(2n).
%o sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
%o F(n) = {my(v = vector(n)); for(n=4, length(v), v[n] = (n-1)*v[n-1] + 2*if(n%2==1, (n-1)*v[n-2], (n-2)*if(n==4,1,v[n-4]))); if(n<4, [1,0,0][n], if(n%2==0, n*(v[n] - (n-3)*v[n-1]), 2*n*v[n-1] + 3*(n-1)*v[n-2] - (n-1)*(n-3)*v[n-3])/2)}
%o D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))}
%o R(n) = {if(n%2==1, 0, if(n==0, 1, (n-1)!*2/(n/2-1)!))}
%o a(n) = {(F(n) + if(n%2==0, 0, my(m=n\2); 2^m * sf(m) + 2*R(m) + 2*D(m) + 2*(m==0)))/8} \\ _Andrew Howroyd_, Sep 12 2017
%Y A007016 gives the number of solutions including symmetrical ones.
%Y Cf. A000166, A007016, A037224, A053871, A292080.
%K nonn
%O 1,5
%A _Jud McCranie_, Sep 24 2001
%E a(11)-a(12) from _Lars Blomberg_, Jan 13 2013
%E Name clarified and terms a(13) and beyond from _Andrew Howroyd_, Sep 12 2017