login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064230
Triangle T(n,k) = number of rational (0,1) matrices of rank k (n >= 0, 0 <= k <= n).
7
1, 1, 1, 1, 9, 6, 1, 49, 288, 174, 1, 225, 6750, 36000, 22560, 1, 961, 118800, 3159750, 17760600, 12514320, 1, 3969, 1807806, 190071000, 5295204600, 34395777360, 28836612000, 1, 16129, 25316928, 9271660734, 1001080231200, 32307576315840
OFFSET
0,5
COMMENTS
Rows add to 2^(n^2).
Komlos and later Kahn, Komlos and Szemeredi show that almost all such matrices are invertible.
Table 3 from M. Zivkovic, Classification of small (0,1) matrices (see link). - Vladeta Jovovic, Mar 28 2006
REFERENCES
J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.
LINKS
M. Zivkovic, Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
FORMULA
Sum_{k=1..n} k * T(n,k) = A086875(n). - Alois P. Heinz, Jun 18 2022
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 9, 6;
1, 49, 288, 174;
1, 225, 6750, 36000, 22560;
1, 961, 118800, 3159750, 17760600, 12514320;
...
PROG
(PARI) T=matrix(5, 5); { for(n=0, 4, mm=matrix(n, n); for(k=0, n, T[1+n, 1+k]=0); forvec(x=vector(n*n, i, [0, 1]), for(i=1, n, for(j=1, n, mm[i, j]=x[i+n*(j-1)])); T[1+n, 1+matrank(mm)]++); for(k=0, n, print1(T[1+n, 1+k], if(k<n, ", ", "; "))); ) }
CROSSREFS
Main diagonal gives A055165.
Sequence in context: A199082 A358644 A220669 * A286331 A363036 A354741
KEYWORD
nonn,nice,tabl
AUTHOR
N. J. A. Sloane, Sep 23 2001
EXTENSIONS
More terms and PARI code from Michael Somos, Sep 25, 2001
6 more terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Dec 17 2004
More terms from Vladeta Jovovic, Mar 28 2006
STATUS
approved