login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

n*(n^2 - 1)*(n+2)*(2*n^5 + 14*n^4 + 49*n^3 + 91*n^2 + 90*n + 18)/324.
1

%I #17 Sep 08 2022 08:45:04

%S 0,0,92,1500,11780,61880,249480,831992,2403800,6205760,14630660,

%T 32006260,65757692,128073400,238223440,425705840,734425840,1228144192,

%U 1997464300,3168663820,4914714420,7468873720,11141275992,16338993000

%N n*(n^2 - 1)*(n+2)*(2*n^5 + 14*n^4 + 49*n^3 + 91*n^2 + 90*n + 18)/324.

%D L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 352.

%H Vincenzo Librandi, <a href="/A064203/b064203.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 4*x^2*(23+145*x+230*x^2+135*x^3+25*x^4+2*x^5)/(1-x)^10. - _Colin Barker_, Feb 28 2012

%t Table[n*(n^2-1)*(n+2)*(2*n^5+14*n^4+49*n^3+91*n^2+90*n +18)/324,{n,0,40}] (* _Vincenzo Librandi_, Feb 29 2012 *)

%o (Magma) [n*(n^2 - 1)*(n+2)*(2*n^5 + 14*n^4 + 49*n^3 + 91*n^2 + 90*n + 18)/324: n in [0..30]]; // _Vincenzo Librandi_, Feb 29 2012

%K nonn,easy

%O 0,3

%A Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001