login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} binomial(n - k*(k-1)/2, k).
1

%I #7 Jun 19 2023 08:04:31

%S 1,1,3,4,8,12,18,27,40,58,83,118,195,242,-1387,-338,75876,44491,

%T -3099115,-2028539,129829195,91749709,-5687984421,-4236497556,

%U 263653557716,204087552038,-12979768392096,-10348229609729,679042377362009,554161706136054,-37712174126966326

%N a(n) = Sum_{k=0..floor(n/2)} binomial(n - k*(k-1)/2, k).

%t Table[ Sum[ Binomial[ n - i*(i - 1)/2, i ], {i, 0, Floor[ n/2 ] } ], {n, 0, 30} ]

%o (PARI) a(n) = sum(k=0, n\2, binomial(n - k*(k-1)/2, k)); \\ _Michel Marcus_, Jun 19 2023

%Y Cf. A063978.

%K sign

%O 0,3

%A Helmut Schnitzspan (HSchnitzspan(AT)gmx.de), Sep 05 2001

%E More terms from _Robert G. Wilson v_, Sep 06 2001

%E Missing a(0)=1 inserted by _Sean A. Irvine_, Jun 18 2023