login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n+1) = product of numerator and denominator in Sum_{k=1..n} 1/a(k).
12

%I #63 Jan 10 2021 11:16:23

%S 1,1,2,10,65,442,3026,20737,142130,974170,6677057,45765226,313679522,

%T 2149991425,14736260450,101003831722,692290561601,4745030099482,

%U 32522920134770,222915410843905,1527884955772562,10472279279564026,71778070001175617,491974210728665290

%N a(1) = 1; a(n+1) = product of numerator and denominator in Sum_{k=1..n} 1/a(k).

%C The numerator and denominator in the definition have no common divisors >1.

%C Also denominators in a system of Egyptian fraction for ratios of consecutive Fibonacci numbers: 1/2 = 1/2, 3/5 = 1/2 + 1/10, 8/13 = 1/2 + 1/10 + 1/65, 21/34 = 1/2 + 1/10 + 1/65 + 1/442 etc. (Rossi and Tout). - _Barry Cipra_, Jun 06 2002

%C a(n)-1 is a square. - _Sture Sjöstedt_, Nov 04 2011

%C From _Wolfdieter Lang_, May 26 2020: (Start)

%C Partial sums of the reciprocals: Sum_{k=1..n} 1/a(k) equal 1 for n=1, and F(2*n - 1)/F(2*n - 3) for n >= 2, with F = A000045. Proof by induction. Hence a(n) = 1 for n=1, and F(2*n - 3)*F(2*n - 5) for n >= 2, with F(-1) = 1 (gcd(F(n), F(n+1) = 1). See the comment by _Barry Cipra_.

%C Thus a(n) = 1, for n = 1, and a(n) = 1 + F(2*(n-2))^2, for n >= 2 (by Cassini-Simson for even index, e.g., Vajda, p. 178 eq.(28)). See the _Sture Sjöstedt_ comment.

%C The known G.f. of {F(2*n)^2} from A049684 leds then to the conjectured formula by _R. J. Mathar_ below, and this proves also the recurrence given there..

%C From the partial sums the series Sum_{k>=1} 1/a(k) converges to 1 + phi, with phi = A001622. See the formulas by _Gary W. Adamson_ and _Diego Rattaggi_ below. (End)

%D S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

%H Michael De Vlieger, <a href="/A064170/b064170.txt">Table of n, a(n) for n = 1..1199</a>

%H Christian Aebi and Grant Cairns, <a href="https://arxiv.org/abs/2006.07566">Lattice Equable Parallelograms</a>, arXiv:2006.07566 [math.NT], 2020.

%H Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.

%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423">Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences</a>, Forum Geometricorum, Volume 16 (2016) 419-427.

%H C. Rossi and C. A. Tout, <a href="http://dx.doi.org/10.1006/hmat.2001.2334">Were the Fibonacci Series and the Golden Section Known in Ancient Egypt?</a>, Historia Mathematica, vol. 29 (2002), 101-113.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).

%F a(n) = Fibonacci(2*n-5)*Fibonacci(2*n-3), for n >= 3. - _Barry Cipra_, Jun 06 2002

%F Sum_{n>=3} 1/a(n) = 2/(1+sqrt(5)) = phi - 1, with phi = A001622. - _Gary W. Adamson_, Jun 07 2003

%F Conjecture: a(n) = 8*a(n-1)-8*a(n-2)+a(n-3), n>4. G.f.: -x*(2*x^2+x^3-7*x+1)/((x-1)*(x^2-7*x+1)). - _R. J. Mathar_, Jul 03 2009 [For a proof see the W. Lang comment above.]

%F a(n+1) = (A005248(n)^2 - A001906(n)^2)/4, for n => 0. - _Richard R. Forberg_, Sep 05 2013

%F From _Diego Rattaggi_, Apr 21 2020: (Start)

%F a(n) = 1 + A049684(n-2) for n>1.

%F Sum_{n>=2} 1/a(n) = phi = (1+sqrt(5))/2 = A001622.

%F Sum_{n>=1} 1/a(n) = phi^2 = 1 + phi. (End) [See a comment above for the proof]

%F a(n) = F(2*n - 3)*F(2*n - 5) = 1 + F(2*(n - 2))^2, for n >= 2, with F(-1) = 1. See the W. Lang comments above. - _Wolfdieter Lang_, May 26 2020

%e 1/a(1) + 1/a(2) + 1/a(3) + 1/a(4) = 1 + 1 + 1/2 + 1/10 = 13/5. So a(5) = 13 * 5 = 65.

%t A064170[1] := 1; A064170[n_] := A064170[n] = Module[{temp = Sum[1/A064170[i], {i, n - 1}]}, Numerator[temp] Denominator[temp]]; Table[A064170[n], {n, 20}](* _Alonso del Arte_, Sep 05 2013 *)

%t Join[{1}, LinearRecurrence[{8, -8, 1}, {1, 2, 10}, 23]] (* _Jean-François Alcover_, Sep 22 2017 *)

%Y Cf. A000045, A059929, A058038.

%Y Cf. A033890 (first differences). - _R. J. Mathar_, Jul 03 2009

%Y Cf. A001906, A001622.

%K nonn,easy

%O 1,3

%A _Leroy Quet_, Sep 19 2001