Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 11 2023 18:32:01
%S 13,139,6091,19843,51787,55793,113143,179029,205157,302551,346361,
%T 460949,895799,970447,1150651,1180847,1697257,1929553,2334781,2580631,
%U 2797447,3056561,3086009,3416717,3598943,4024667,4026107,4067123,4077583,4389503,4541083,4790503
%N Primes p = p(k) such that p(k) + p(k+9) = p(k+1) + p(k+8) = p(k+2) + p(k+7) = p(k+3) + p(k+6) = p(k+4) + p(k+5).
%F Primes p = prime(k) = A000040(k) such that A359440(k+4) >= 4. - _Peter Munn_, Jan 13 2023
%e 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31.
%t a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 10 ] ] == a[ [ 2 ] ] + a[ [ 9 ] ] == a[ [ 3 ] ] + a[ [ 8 ] ] == a[ [ 4 ] ] + a[ [ 7 ] ] == a[ [ 5 ] ] + a[ [ 6 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 3 10^5} ]
%Y Cf. A000040, A022885, A064101, A359440.
%K easy,nonn
%O 1,1
%A _Robert G. Wilson v_, Sep 17 2001
%E More terms from _Sean A. Irvine_, Jun 11 2023