Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #87 Nov 08 2024 07:20:56
%S 1,1,1,2,5,29,433,37666,48928105,5528778008357,811537892743746482789,
%T 13460438563050022083842073547074914,
%U 32770967840592833551621556305285371426044732591005957081
%N a(n+1) = (a(n)^2 + a(n-1)^2)/a(n-2), with a(1) = a(2) = a(3) = 1.
%C This sequence was introduced by Dana Scott but possibly studied earlier by others. - _James Propp_, Jan 27 2005
%C Sequence gives the upper-left entries of the respective matrices
%C [1 1] [1 0] [2 1] [5 2] [29 12] [433 179] [37666 15571]
%C [1 2] [0 1] [1 1] [2 1] [12 5] [179 74] [15571 6437], ...
%C satisfying the recurrence M(n) = M(n-1) M(n-3)^(-1) M(n-1) (note that the Fibonacci numbers satisfy the additive version of this recurrence). - _James Propp_, Jan 27 2005
%C Define b(1) = b(2) = b(3) = 1; b(n) = (b(n-1) + b(n-2))^2/b(n-3); then a(n) = sqrt(b(n)). - _Benoit Cloitre_, Jul 28 2002
%C Any 3 successive terms of the sequence satisfy the Markov equation x^2 + y^2 + z^2 = 3 xyz. Therefore from the 3rd term on this is a subsequence of the Markov numbers, A002559. Also, we conjecture that the limit of log(log(a(n)))/n is log((sqrt(5) + 1)/2). - Martin Giese (martin.giese(AT)oeaw.ac.at), Oct 13 2005
%C A subsequence of the Markoff numbers A002559. - _Andrew Hone_, Jan 16 2006
%C The recursion exhibits the Laurent phenomenon. Let F(n) = Fibonacci(n), e(n) = F(n) - 1, a(1) = a1, a(2) = a2, a(3) = a3, a(n) = (a(n-1)^2 + a(n-3)^2) / a(n-3), b(n) = a(n) * a1^e(n-1) * a2^e(n-2) * a3^e(n-3). Then b(n) for n > 1 is an irreducible polynomial in {a1^2, a2^2, a3^2}, b(n) = (b(n-1)^2 + (b(n-2) * a1^F(n-4) * a2^F(n-5) * a3^F(n-6))^2) / b(n-3), and a(n) = a(n-1) * a(n-2) * (a1^2 + a2^2 + a3^2) / (a1 * a2 * a3) - a(n-3). - _Michael Somos_, Jan 12 2013
%C Starting with n = 5, a(n) is the largest number in row n - 5 of the Markov tree, A368546. These numbers are obtained by descending the tree in alternating right and left steps; their Farey indices (see A368546 for the definition) are ratios of successive Fibonacci numbers, 1/2, 2/3, 3/5, 5/8, ... See Aigner, Proposition 10.2. - _Wouter Meeussen_ and _William P. Orrick_, Feb 11 2024
%D Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
%H Harry J. Smith, <a href="/A064098/b064098.txt">Table of n, a(n) for n = 1..18</a>
%H Martin Aigner, <a href="https://archive.org/details/markovstheorem100000aign">Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings</a>, [archive.org copy of the book].
%H S. Fomin and A. Zelevinsky, <a href="http://dx.doi.org/10.1006/aama.2001.0770">The Laurent Phenomenon</a>, Advances in Applied Mathematics, 28 (2002), 119-144.
%H Andrew N. W. Hone, <a href="https://arxiv.org/abs/math/0601324">Diophantine non-integrability of a third order recurrence with the Laurent property</a>, arXiv:math/0601324 [math.NT], 2006.
%H Andrew N. W. Hone, <a href="https://doi.org/10.1088/0305-4470/39/12/L01">Diophantine non-integrability of a third order recurrence with the Laurent property</a>, J. Phys. A: Math. Gen. 39 (2006), L171-L177.
%H Andrew N. W. Hone, <a href="https://arxiv.org/abs/2109.08217">Growth of Mahler measure and algebraic entropy of dynamics with the Laurent property</a>, arXiv:2109.08217 [math.NT], 2021.
%H KöMaL-Mathematical and Physical Journal for Secondary Schools, <a href="https://www.komal.hu/verseny/2001-04/mat.e.shtml">New advanced problems: proposed problem A265</a>, April 2001.
%H L. J. Mordell, <a href="https://doi.org/10.1112/jlms/s1-28.4.500">On the integer solutions of the equation x^2+y^2+z^2+2xyz=n</a>, J. Lond. Math. Soc. 28 (1953), 500-510.
%H J. Propp, <a href="http://arxiv.org/abs/math/0511633">The combinatorics of frieze patterns and Markoff numbers</a>, arXiv:math/0511633 [math.CO], 2005-2008.
%H Matthew Christopher Russell, <a href="https://doi.org/10.7282/T3MC926D">Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
%F Conjecture: lim_{n -> infinity} log(log(a(n)))/n exists = 0.48.... - _Benoit Cloitre_, Aug 07 2002. This is true - see below.
%F For this subsequence of the Markoff numbers, we have 2^(F(n-1) - 1) < a(n) < 3^(F(n-1) - 1) for n > 4, where F(n) are the Fibonacci numbers with F(0)=0, F(1)=1, F(n+1) = F(n) + F(n-1). Hence log(log(a(n)))/n tends to log((1 + sqrt(5))/2) as previously conjectured. - _Andrew Hone_, Jan 16 2006
%F a(n) = 3 * a(n-1) * a(n-2) - a(n-3). a(4-n) = a(n) for all n in Z. - _Michael Somos_, Jan 12 2013
%F a(n) ~ 1/3 * c^(((1 + sqrt(5))/2)^n), where c = 1.2807717799265504005186306582930649245... . - _Vaclav Kotesovec_, May 06 2015
%e G.f. = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 29*x^6 + 433*x^7 + 37666*x^8 + ...
%p f:=proc(n) option remember; global K; local i;
%p if n <= K then 1
%p else add(f(n-i)^2,i=1..K-1)/f(n-K); fi; end;
%p K:=3;
%p [seq(f(n),n=1..10)]; # _N. J. A. Sloane_, Mar 17 2017
%t a[n_]:= (a[n-1]^2 +a[n-2]^2)/a[n-3]; a[1]=a[2]=a[3]=1; Array[a, 13] (* Or *)
%t a[n_]:= 3*a[n-1]*a[n-2] - a[n-3]; a[1]= a[2]= a[3]= 1; Array[a, 13] (* _Robert G. Wilson v_, Dec 26 2012 *)
%o (PARI) {a(n) = if( n<1, n = 4-n); if( n<4, 1, 3 * a(n-1) * a(n-2) - a(n-3))}; /* _Michael Somos_, Jan 12 2013 */
%o (PARI) { a=a3=a2=a1=1; for (n = 1, 18, if (n>3, a=(a1^2 + a2^2)/a3; a3=a2; a2=a1; a1=a); write("b064098.txt", n, " ", a) ) } /* _Harry J. Smith_, Sep 06 2009 */
%o (Magma) [n le 3 select 1 else (Self(n-1)^2 + Self(n-2)^2)/Self(n-3): n in [1..16]]; // _G. C. Greubel_, Nov 07 2024
%o (SageMath)
%o def A064098(n):
%o def a(n): return 1 if n<4 else (a(n-1)^2 + a(n-2)^2)/a(n-3)
%o return a(n)
%o [A064098(n) for n in range(16)] # _G. C. Greubel_, Nov 07 2024
%Y Cf. A002559, A072878, A072879, A072880.
%Y Markov tree: A327345, A368546.
%K nonn
%O 1,4
%A _Santi Spadaro_, Sep 16 2001
%E Entry improved by comments from _Michael Somos_, Sep 25 2001