login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Zsigmondy numbers for a = 3, b = 1: Zs(n, 3, 1) is the greatest divisor of 3^n - 1^n (A024023) that is relatively prime to 3^m - 1^m for all positive integers m < n.
9

%I #15 Sep 26 2018 03:03:12

%S 2,1,13,5,121,7,1093,41,757,61,88573,73,797161,547,4561,3281,64570081,

%T 703,581130733,1181,368089,44287,47071589413,6481,3501192601,398581,

%U 387440173,478297,34315188682441,8401,308836698141973,21523361

%N Zsigmondy numbers for a = 3, b = 1: Zs(n, 3, 1) is the greatest divisor of 3^n - 1^n (A024023) that is relatively prime to 3^m - 1^m for all positive integers m < n.

%C By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

%H K. Zsigmondy, <a href="http://dx.doi.org/10.1007/BF01692444">Zur Theorie der Potenzreste</a>, Monatsh. f. Math. 3 (1892) 265-284.

%Y Cf. A024023, A064078, A064080, A064081, A064082, A064083.

%K nonn

%O 1,1

%A _Jens Voß_, Sep 04 2001

%E More terms from _Vladeta Jovovic_, Sep 06 2001

%E Definition corrected by _Jerry Metzger_, Nov 04 2009