Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Sep 21 2023 01:45:10
%S 1,3,10,19,26,30,50,83,91,78,122,190,170,150,260,339,290,273,362,494,
%T 500,366,530,830,651,510,820,950,842,780,962,1363,1220,870,1300,1729,
%U 1370,1086,1700,2158,1682,1500,1850,2318,2366,1590,2210,3390,2451,1953
%N a(n) = (-1)^n*Sum_{d|n} (-1)^d*d^2.
%D G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.
%H Paul D. Hanna, <a href="/A064027/b064027.txt">Table of n, a(n) for n = 1..1000</a>
%H Heekyoung Hahn, <a href="https://arxiv.org/abs/1507.04426">Convolution sums of some functions on divisors</a>, arXiv:1507.04426 [math.NT], 2015.
%F Multiplicative with a(2^e) = (4^(e+1)-7)/3, a(p^e) = (p^(2*e+2)-1)/(p^2-1), p > 2.
%F a(n) = (-1)^n*(A001157(n) - 2*A050999(n)).
%F Logarithmic derivative of A224364. - _Paul D. Hanna_, Apr 04 2013
%F Bisection: a(2*k-1) = A001157(2*k-1), a(2*k) = 4*A001157(k) - A050999(2*k), k >= 1. In the Hardy reference a(n) = sigma^*_2(n). - _Wolfdieter Lang_, Jan 07 2017
%F G.f.: Sum_{k>=1} k^2*x^k/(1 - (-x)^k). - _Ilya Gutkovskiy_, Nov 09 2018
%F Sum_{k=1..n} a(k) ~ 7 * zeta(3) * n^3 / 24. - _Vaclav Kotesovec_, Nov 10 2018
%F Dirichlet g.f.: zeta(s) * zeta(s-2) * (1 - 1/2^(s-1) + 1/2^(2*s-3)). - _Amiram Eldar_, Sep 21 2023
%e L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 26*x^5/5 + 30*x^6/6 + ...
%e where exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 32*x^6 + 59*x^7 + 106*x^8 + 181*x^9 + ... + A224364(n)*x^n + ... - _Paul D. Hanna_, Apr 04 2013
%t a[n_] := (-1)^n DivisorSum[n, (-1)^# * #^2 &]; Array[a, 50] (* _Jean-François Alcover_, Dec 23 2015 *)
%t a[n_] := If[OddQ[n], 1, (1 - 6/(4^(IntegerExponent[n, 2] + 1) - 1))] * DivisorSigma[2, n]; Array[a, 100] (* _Amiram Eldar_, Sep 21 2023 *)
%o (PARI) {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^1, d, (-1)^d*d^2))} \\ _Paul D. Hanna_, Apr 04 2013
%o (Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[k^2*x^k/(1-(-x)^k): k in [1..m]]) )); // _G. C. Greubel_, Nov 09 2018
%Y Cf. A001157, A002129, A008457, A050999, A224364.
%Y Cf. A321543 - A321565, A321807 - A321836 for related sequences.
%K mult,easy,nonn
%O 1,2
%A _Vladeta Jovovic_, Sep 11 2001