login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063975
Smallest numbers such that the number of terms in inverse set usigma equals n; where usigma = A034448.
1
1, 12, 24, 60, 120, 72, 216, 288, 1320, 480, 240, 840, 1296, 2700, 960, 1512, 1080, 720, 1728, 2016, 3840, 3240, 3456, 2520, 3360, 3024, 1440, 3600, 6912, 2160, 19152, 2880, 7920, 13680, 9072, 12600, 6048, 5040, 18000, 6480, 27216, 13440, 7200, 27648, 5760
OFFSET
1,2
LINKS
EXAMPLE
usigma(x) = 288, invusigma(288) = {138, 154, 165, 168, 213, 235, 248, 253}, so a(288) = 8, the number of all terms in the inverse set and all similar numbers are larger: {288, 648, 672, 900}.
MAPLE
with(numtheory): A034448 := proc(n) option remember: local ans, i: ans:=1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: return ans: end: for n from 1 to 5000 do m:=A034448(n): if(type(ct[m], integer))then ct[m]:=ct[m]+1: else ct[m]:=1: fi:od: for m from 1 to 28 do for n from 1 to 5000 do if(ct[n]=m)then printf("%d, ", n):break: fi: od:od: # Nathaniel Johnston, Apr 29 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 05 2001
EXTENSIONS
a(9) - a(45) from Nathaniel Johnston, Apr 29 2011
STATUS
approved