login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Every number is the sum of 4 squares; these are the numbers n for which the first square can be taken to be any positive square < n.
6

%I #25 Jan 27 2018 11:06:44

%S 0,1,2,3,4,5,6,7,9,10,12,13,14,15,17,18,20,21,22,25,26,28,30,33,34,36,

%T 38,41,42,45,46,49,50,52,54,57,58,60,62,65,66,68,70,73,74,78,81,82,84,

%U 86,89,90,94,97,98,100,102,105,106,110,114,118,122,126,129,130

%N Every number is the sum of 4 squares; these are the numbers n for which the first square can be taken to be any positive square < n.

%C The only primes of this form are 2, 3, 5, 7, 13, 17, 41, 73, 89, 97, 257, 313, 353, 433.

%C Also, the numbers n such that for no 0 < k < sqrt(n), n-k^2 is in A004215, i.e., of the form 4^i(8j+7). The largest odd number in this sequence is a(322) = 945, cf. A063951. - _M. F. Hasler_, Jan 26 2018

%D J. H. Conway, personal communication, Aug 27, 2001.

%H T. D. Noe, <a href="/A063949/b063949.txt">Table of n, a(n) for n = 1..1109</a> (numbers < 4000)

%F Consists of 0, the 54 odd numbers in A063951, 4 times those numbers and all numbers of the form 4m+2.

%F a(n) = 4*(n-110) + 2 for all n > 1054. - _M. F. Hasler_, Jan 26 2018

%t t1 = {1, 3, 5, 7, 9, 13, 15, 17, 21, 25, 33, 41, 45, 49, 57, 65, 73, 81, 89, 97, 105, 129, 145, 153, 169, 177, 185, 201, 209, 217, 225, 257, 273, 297, 305, 313, 329, 345, 353, 385, 425, 433, 441, 481, 513, 561, 585, 609, 689, 697, 713, 817, 825, 945}; Union[{0}, t1, 4*t1, 4*Range[0, 999] + 2] (* _T. D. Noe_, Feb 22 2012 *)

%o (PARI) is_A063949(n)=if(bittest(n,0),is_A063951(n),n%4==2||is_A063951(n/4)||!n) \\ _M. F. Hasler_, Jan 26 2018

%o (PARI) #A063949_vec=select( is_A063949, [0..3780]) /* or: setunion(setunion(concat(0,A063951), 4*A063951),apply(t->t-2,4*[1..945])) */

%o (PARI) A063949(n)=if(n>1054,n*4-438,A063949_vec[n]) \\ _M. F. Hasler_, Jan 26 2018

%Y Cf. A063950, A063951, A063952, A063953, A063954.

%K nonn,easy,nice

%O 1,3

%A _N. J. A. Sloane_, Sep 04 2001