Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Jun 03 2024 12:16:47
%S 1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,28,30,32,35,36,40,
%T 42,45,48,49,50,54,56,60,63,64,70,72,75,80,81,84,88,90,91,92,96,98,
%U 100,105,108,112,115,120,125,126,128,135,140,144,147,150,160,161,162,168
%N Numbers k that divide tau(k), where tau(k)=A000594(k) is Ramanujan's tau function.
%C Although most small numbers are in the sequence, it becomes sparser for larger values; e.g., only 504 numbers up to 10000 and only 184 numbers from 10001 to 20000 are in the sequence.
%H Seiichi Manyama, <a href="/A063938/b063938.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TauFunction.html">Tau Function.</a>
%t (* First do <<NumberTheory`Ramanujan` *) test[n_] := Mod[RamanujanTau[n], n]==0; Select[Range[200], test]
%t (* Second program: *)
%t Select[Range@ 168, Divisible[RamanujanTau@ #, #] &] (* _Michael De Vlieger_, Dec 23 2017 *)
%o (PARI) for (n=1,1000,if(Mod(ramanujantau(n),n)==0,print1(n", "))) \\ _Dana Jacobsen_, Sep 06 2015
%o (Perl) use ntheory ":all"; my @p = grep { !(ramanujan_tau($_) % $_) } 1..1000; say "@p"; # _Dana Jacobsen_, Sep 06 2015
%o (Python)
%o from itertools import count, islice
%o from sympy import divisor_sigma
%o def A063938_gen(startvalue=1): # generator of terms >= startvalue
%o return filter(lambda n: not -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n, count(max(startvalue,1)))
%o A063938_list = list(islice(A063938_gen(),25)) # _Chai Wah Wu_, Nov 08 2022
%Y For the sequence when n is prime see A007659.
%Y Cf. A063940, A000594, A079334, A296991, A296993.
%K nonn,easy
%O 1,2
%A _Robert G. Wilson v_, Aug 31 2001
%E More terms from _Dean Hickerson_, Jan 03 2003