Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 30 2023 23:13:31
%S 0,1,3,4,9,9,18,17,93,29,84,45,433,66,253,93,1274,126,534,166,2940,
%T 214,1120,270,5866,335,1601,410,11359,495,2448,591,17371,699,3654,819,
%U 27487,954,4947,1099,42980,1260,6660,1436,59356,1628,8832,1836,82224,2061
%N a(n) is the number of pairs of integer quadruples (b_1, b_2, b_3, b_4) and (c_1, c_2, c_3, c_4) satisfying 1 <= b_1 < b_2 < b_3 < b_4 < n, 1 <= c_1 < c_2 < c_3 < c_4 < n, b_i != c_j for all i,j = 1,2,3,4 and Product_{i=1..4} cos(2*Pi*b_i/n) = Product_{i=1..4} cos(2*Pi*c_i/n).
%H Eckard Specht, <a href="/A063780/b063780.txt">Table of n, a(n) for n = 8..200</a>
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a063/A063780.java">Java program</a> (github)
%H Eckard Specht, <a href="/A063780/a063780.cpp.txt">C++ program</a>
%e For n=9, the only solution is (1, 4, 6, 7), (2, 3, 5, 8). - _Sean A. Irvine_, May 30 2023
%Y Cf. A063781.
%K nonn
%O 8,3
%A _Eckard Specht_, Aug 17 2001
%E Revised by _Sean A. Irvine_, May 30 2023