login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063733
A variant of Recamán's sequence: a(0)=1, a(n) = a(n-1)-(n-1) if positive and new, else a(n) = a(n-1)+(n-1).
11
1, 1, 2, 4, 7, 3, 8, 14, 21, 13, 22, 12, 23, 11, 24, 10, 25, 9, 26, 44, 63, 43, 64, 42, 19, 43, 18, 44, 17, 45, 16, 46, 15, 47, 80, 114, 79, 115, 78, 40, 79, 39, 80, 38, 81, 37, 82, 36, 83, 35, 84, 34, 85, 33, 86, 32, 87, 31, 88, 30, 89, 29, 90, 28, 91, 27
OFFSET
0,3
FORMULA
a(n+1) = A005132(n) - 1; A005132 is Recamán's sequence. - Franklin T. Adams-Watters, Mar 12 2010
MATHEMATICA
a[0] = 1; a[n_] := a[n] = If[an = a[n-1] - (n-1); an > 0 && FreeQ[Array[a, n-1], an], an, a[n-1] + (n-1)]; Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Feb 18 2018 *)
PROG
(Haskell)
a063733 n = a063733_list !! n
a063733_list = 1 : f 0 [1] where
f x ys@(y:_) | u > 0 && u `notElem` ys = u : f (x + 1) (u : ys)
| otherwise = v : f (x + 1) (v : ys)
where u = y - x; v = x + y
-- Reinhard Zumkeller, Jul 02 2015
(Python)
l=[1]
for n in range(1, 101):
x = l[n - 1] - (n - 1)
if x > 0 and x not in l:
l.append(x)
else:
l.append(l[n - 1] + (n - 1))
print(l) # Indranil Ghosh, Jun 02 2017
CROSSREFS
See A005132, which is the main entry for this sequence. A063753 = 1 + A005132. A row of A066201. Also a row of A066202.
See also A078943.
Cf. A141126.
Sequence in context: A100707 A302663 A078943 * A187089 A141330 A239324
KEYWORD
nonn,nice,easy,look
AUTHOR
N. J. A. Sloane, Sep 05 2001
STATUS
approved