Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 04 2021 09:25:34
%S 10,4,3,1,5,8,8,3,4,2,21,19,17,22,11,13,17,11,7,9,18,7,19,13,5,26,19,
%T 3,24,6,16,12,13,31,15,21,24,29,18,31,17,12,18,5,12,28,16,11,15,10,35,
%U 32,33,12,26,27,8,40,26,10,21,8,19,17,24,8,33,16,9,14
%N 3^a(n) = smallest positive power of 3 having n in its decimal representation.
%H Harvey P. Dale, <a href="/A063566/b063566.txt">Table of n, a(n) for n = 0..1000</a>
%e a(2) = a(7) = a(27) = 3 because 3^3 = 27.
%t a = {}; Do[k = 1; While[ StringPosition[ ToString[3^k], ToString[n] ] == {}, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
%t sp3[n_]:=Module[{idn=IntegerDigits[n],t=1},While[!MemberQ[Partition[ IntegerDigits[ 3^t],Length[idn],1],idn],t++];t]; Array[sp3,60,0] (* _Harvey P. Dale_, Oct 29 2013 *)
%o (Python)
%o def a(n):
%o s, k = str(n), 1
%o while s not in str(3**k): k += 1
%o return k
%o print([a(n) for n in range(70)]) # _Michael S. Branicky_, Oct 04 2021
%Y Essentially the same as A062520.
%Y Cf. A000244.
%K base,nonn
%O 0,1
%A _Robert G. Wilson v_, Aug 10 2001