Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 18 2018 17:45:44
%S 0,1,3,6,10,15,23,32,42,51
%N Least number of empty convex quadrilaterals (4-gons) determined by n points in the plane.
%D K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. PhD thesis, TU Braunschweig, Germany, 1987.
%H O. Aichholzer and H. Krasser, <a href="http://www.ist.tugraz.at/publications/oaich/psfiles/ak-psotd-01.ps.gz">The point set order type data base: a collection of applications and results</a>, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
%H O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. <a href="http://www.ist.tugraz.at/files/publications/geometry/afhhpv-lbnsc-13-cgta.pdf">Lower bounds for the number of small convex k-holes</a>. Computational Geometry: Theory and Applications, 47(5):605-613, 2014.
%H O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, B. Vogtenhuber, <a href="http://www.eurogiga-compose.eu/posezo/n12_c1_min_crossing_number_153/n12_c1_min_crossing_number_153.php">A set of 12 points minimizing the numbers of convex 3-, 4-, and 5-holes.</a>
%H O. Aichholzer, T. Hackl, and M. Scheucher, <a href="http://www.eurogiga-compose.eu/posezo/n12_c1_min_convex_3_4_5_holes/n12_c1_min_convex_3_4_5_holes.php">A set of 13 points minimizing the numbers of convex 3-, 4-, and 5-holes.</a>
%H M. Scheucher, <a href="http://www.ist.tugraz.at/staff/scheucher/publ/bachelors_thesis_2013.pdf">Counting Convex 5-Holes</a>, Bachelor's thesis, Graz University of Technology, Austria, 2013, in German.
%Y Cf. A063541 and A276096 for empty convex 3- and 5-gons (a.k.a. k-holes), respectively. The rectilinear crossing number A014540 is the number of (not necessarily empty) convex quadrilaterals.
%K nonn,more
%O 4,3
%A _N. J. A. Sloane_, Aug 14 2001
%E a(11)-a(13) from _Manfred Scheucher_, Aug 17 2018