login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n upper triangular binary matrices over GF(2) B such that B^2 = 0.
2

%I #17 Sep 18 2018 04:15:25

%S 2,8,32,320,2592,57472,946176,44302336,1482686464,143210315776,

%T 9732400087040,1915349322694656,263918421714927616,

%U 105091512697853313024,29316605112733216538624,23522116026027393322844160,13266245323073952003913678848,21392237922664971275489914126336,24362629720999005014327927695736832

%N Number of n X n upper triangular binary matrices over GF(2) B such that B^2 = 0.

%C In the reference a more general formula is given for the number of such matrices over GF(q) for any q.

%H Robert Israel, <a href="/A063505/b063505.txt">Table of n, a(n) for n = 2..113</a>

%H Shalosh B. Ekhad, Doron Zeilberger, <a href="https://arxiv.org/abs/math/9512224">An Explicit Formula for the Number of Solutions of X^2=0 in Triangular Matrices over a Finite Field</a>, arXiv:math/9512224 [math.CO], 1995.

%H Shalosh B. Ekhad, Doron Zeilberger, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v3i1r2">An Explicit Formula for the Number of Solutions of X^2=0 in Triangular Matrices over a Finite Field</a>, Elec. J. Comb. 3(1)(1996).

%F a(2n) = Sum_{j>=0} (C(2n, n - 3j) - C(2n, n - 3j - 1)) * 2^(n^2 - 3j^2 - j).

%F a(2n+1) = Sum_{j>=0} (C(2n + 1, n - 3j) - C(2n + 1, n - 3j - 1)) * 2^(n^2 + n - 3j^2 - 2j)

%p feven:= n -> add((binomial(2*n,n-3*j) - binomial(2*n,n-3*j-1))*2^(n^2-3*j^2-j),j=0..n/3):

%p fodd:= n -> add((binomial(2*n+1,n-3*j)-binomial(2*n+1,n-3*j-1))*2^(n^2+n-3*j^2-2*j),j=0..n/3):

%p seq(op([feven(i),fodd(i)]),i=1..20); # _Robert Israel_, Mar 01 2017

%t a[n_] := Sum[If[EvenQ[n], (Binomial[n, n/2 - 3j] - Binomial[n, n/2 - 3j - 1])*2^((n/2)^2 - 3j^2 - j), (Binomial[n, (n-1)/2 - 3j] - Binomial[n, (n-1)/2 - 3j - 1])*2^(((n-1)/2)^2 + (n-1)/2 - 3j^2 - 2j)], {j, 0, n/3}];

%t Table[a[n], {n, 2, 20}] (* _Jean-François Alcover_, Sep 18 2018 *)

%Y Cf. A053722.

%K nonn

%O 2,1

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 30 2001

%E More terms from _Vladeta Jovovic_, Aug 01 2001

%E Edited and more terms added by _Robert Israel_, Mar 01 2017