login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of idempotent reversible binary (i.e., radius one half) cellular automata of order n. Equivalently, number of loop-noded symmetric 2-colored unique 2-path graphs on n nodes. Equivalently, number of idempotent semicentral bigroupoids of order n.
1

%I #29 Mar 22 2020 09:26:42

%S 1,1,1,3,1,9,1,53,184,813,1,144802

%N Number of idempotent reversible binary (i.e., radius one half) cellular automata of order n. Equivalently, number of loop-noded symmetric 2-colored unique 2-path graphs on n nodes. Equivalently, number of idempotent semicentral bigroupoids of order n.

%C a(n)=1 for prime values of n as we must factor to get nontrivial examples.

%D T. Boykett, "Combinatorial construction of one-dimensional cellular automata", Contributions to General Algebra 9, 1994.

%H T. Boykett, <a href="http://www.algebra.uni-linz.ac.at/~tim/enumeration.ps.gz">Efficient exhaustive enumeration of one dimensional reversible cellular automata</a>, 2001.

%H Tim Boykett, <a href="http://dx.doi.org/10.1016/j.tcs.2004.06.007">Efficient exhaustive listings of reversible one dimensional cellular automata</a>, Theoretical Computer Science 325 (2004) 215-247.

%H D. Hillman, <a href="http://dx.doi.org/10.1016/0167-2789(91)90128-V">The structure of reversible one-dimensional cellular automata</a>, Physica D, 52:277-292, 1991.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%Y Cf. A261864.

%K nice,nonn,hard,more

%O 1,4

%A Tim Boykett (tim(AT)timesup.org), Jul 27 2001

%E a(12) from Tim Boykett's 2004 article, page 244.