Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Mar 14 2023 04:37:53
%S 1,2,4,4,4,4,6,9,6,4,8,8,4,8,16,8,6,6,8,16,8,4,12,18,6,8,16,8,8,8,10,
%T 20,8,8,24,12,4,8,24,12,8,8,8,24,12,4,16,24,9,12,16,8,8,16,24,24,8,4,
%U 16,16,4,12,36,24,16,8,8,16,16,8,18,18,4,12,24,16,16,8,16,40,10,4,16
%N Number of divisors of n-th triangular number.
%C a(n) = 4 iff either n is in A005383 or n/2 is in A005384.
%C a(n) is odd iff n is in A001108.
%C a(n) = 6 if either n = 18 or n = q^2 where q is in A048161 or n = 2 q^2 - 1 where q is in A106483. - _Robert Israel_, Oct 26 2015
%C From _Bernard Schott_, Aug 29 2020: (Start)
%C a(n-1) is the number of solutions in positive integers (x, y, z) to the simultaneous equations (x + y - z = n, x^2 + y^2 - z^2 = n) for n > 1. See the British Mathematical Olympiad link. In this case, one always has z > x and z > y.
%C For n = 12 as in the Olympiad problem, the a(11) = 8 solutions are (13,78,79), (14,45,47), (15,34,37), (18,23,29), (23,18,29), (34,15,37), (45,14,47), (78,13,79). (End)
%D Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 2 of the British Mathematical Olympiad 2007, page 28.
%H Ray Chandler, <a href="/A063440/b063440.txt">Table of n, a(n) for n = 1..10000</a>
%H British Mathematical Olympiad 2007/2008, Round 1, <a href="https://bmos.ukmt.org.uk/home/bmo1-2008.pdf">Problem 2</a>.
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.
%F a(n) = A000005(A000217(n)).
%F From _Robert Israel_, Oct 26 2015: (Start)
%F a(2k) = A000005(k)*A000005(2k+1).
%F a(2k+1) = A000005(2k+1)*A000005(k+1).
%F gcd(a(2k), a(2k+1)) = A000005(2k+1) * A060778(k). (End)
%e a(6) = 4 since 1+2+3+4+5+6 = 21 has four divisors {1,3,7,21}.
%p seq(numtheory:-tau(n*(n+1)/2), n=1..100); # _Robert Israel_, Oct 26 2015
%t DivisorSigma[0,#]&/@Accumulate[Range[90]] (* _Harvey P. Dale_, Apr 15 2019 *)
%o (PARI) for (n=1, 10000, write("b063440.txt", n, " ", numdiv(n*(n + 1)/2)) ) \\ _Harry J. Smith_, Aug 21 2009
%o (PARI) a(n)=factorback(apply(numdiv,if(n%2,[n,(n+1)/2],[n/2,n+1]))) \\ _Charles R Greathouse IV_, Dec 27 2014
%o (PARI) vector(100, n, numdiv(n*(n+1)/2)) \\ _Altug Alkan_, Oct 26 2015
%Y Cf. A000005, A000217.
%Y Cf. A001108, A005383, A005384, A048161, A060778, A081978 (greedy inverse), A106483, A101755 (indices of records), A101756 (records).
%K nonn,easy
%O 1,2
%A _Henry Bottomley_, Jul 24 2001