login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient array for certain numerator polynomials N4(n,x), n >= 0 (rising powers of x) used for quadrinomials.
5

%I #13 May 09 2024 10:34:26

%S 1,1,1,1,3,-3,1,2,0,-2,1,1,3,-5,2,6,-8,3,3,4,-16,15,-6,1,1,10,-20,10,

%T 3,-4,1,10,-9,-15,27,-15,3,4,17,-60,66,-32,6,1,22,-41,-6,71,-74,36,-9,

%U 1,15,6,-105,168,-111,24,9,-6,1,5,45,-147,133,21

%N Coefficient array for certain numerator polynomials N4(n,x), n >= 0 (rising powers of x) used for quadrinomials.

%C The g.f. of column k of array A008287(n,k) (quadrinomial coefficients) is (x^(ceiling(k/3)))*N4(k,x)/(1-x)^(k+1).

%C The sequence of degrees for the polynomials N4(n,x) is [0, 0, 0, 0, 2, 3, 3, 2, 5, 6, 5, 5, 8, 8, 8,...] for n >= 0.

%C Row sums N4(n,1)=1 for all n.

%F a(n, m) = [x^m] N4(n, x), n, m >= 0, with N4(n, x) = Sum_{j=1..3} ((1-x)^(j-1))*(x^(b(c(n), j)))*N4(n-j, x), N4(n, x) = 1 for n = 0, 1, 2 and b(c(n), j) := 1 if 1<= j <= c(n) else 0, with c(n) := 2 if mod(n, 3) = 0 else c(n) := mod(n, 3) - 1; (hence b(0, j) = 0, j=1..3).

%e The irregular triangle begins:

%e 1;

%e 1;

%e 1;

%e 1;

%e 3, -3, 1;

%e 2, 0, -2, 1;

%e 1, 3, -5, 2;

%e 6, -8, 3;

%e ...

%e For c=1: b(1,1) = 1, b(1,2) = 0 = b(1,3), and N4(6,x)=1+3*x-5*x^2+2*x^3.

%Y Cf. A008287.

%K sign,easy,tabf

%O 0,5

%A _Wolfdieter Lang_, Jul 27 2001