login
Dimension of the space of weight n cuspidal newforms for Gamma_1( 82 ).
0

%I #13 Feb 17 2025 11:40:21

%S -1,69,140,210,280,350,420,488,560,628,700,770,840,906,980,1048,1120,

%T 1188,1260,1326,1400,1466,1540,1608,1680,1744,1820,1886,1960,2026,

%U 2100,2164,2240,2304,2380,2446,2520,2582,2660,2724,2800,2864

%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 82 ).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 1, 0, 0, 0, -1).

%F From _Colin Barker_, Feb 25 2016: (Start)

%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.

%F G.f.: -x^2*(1 -69*x -140*x^2 -210*x^3 -281*x^4 -281*x^5 -281*x^6 -209*x^7 -140*x^8 -68*x^9 +x^10 -x^11) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).

%F (End)

%K sign,changed

%O 2,2

%A _N. J. A. Sloane_, Jul 14 2001