%I #17 Feb 17 2025 11:29:13
%S -1,68,152,236,318,402,484,572,650,738,816,906,982,1074,1148,1242,
%T 1314,1408,1480,1578,1646,1744,1812,1912,1978,2080,2144,2248,2310,
%U 2414,2476,2584,2642,2750,2808,2918,2974,3086,3140,3254,3306,3420
%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 68 ).
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 1, 0, 0, 0, -1).
%F From _Colin Barker_, Feb 25 2016: (Start)
%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.
%F G.f.: -x^2*(1 -68*x -152*x^2 -236*x^3 -319*x^4 -334*x^5 -333*x^6 -268*x^7 -180*x^8 -100*x^9 -13*x^10) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)). (End)
%K sign,changed
%O 2,2
%A _N. J. A. Sloane_, Jul 14 2001