Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 02 2023 13:13:36
%S -1,42,94,144,198,248,302,350,406,454,510,556,614,660,718,762,822,866,
%T 926,968,1030,1072,1134,1174,1238,1278,1342,1380,1446,1484,1550,1586,
%U 1654,1690,1758,1792,1862,1896,1966,1998,2070,2102,2174
%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 56 ).
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,-1).
%F From _Colin Barker_, Feb 24 2015: (Start)
%F a(n) = a(n-2)+a(n-4)-a(n-6) for n>8.
%F G.f.: x^2*(9*x^6+62*x^5+105*x^4+102*x^3+95*x^2+42*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)).
%F (End)
%t LinearRecurrence[{0,1,0,1,0,-1},{-1,42,94,144,198,248,302},50] (* _Harvey P. Dale_, Jun 10 2022 *)
%K sign
%O 2,2
%A _N. J. A. Sloane_, Jul 14 2001