login
Dimension of the space of weight n cuspidal newforms for Gamma_1( 28 ).
0

%I #13 Feb 17 2025 12:40:06

%S -1,8,22,36,48,62,74,92,100,118,126,146,152,174,178,202,204,228,230,

%T 258,256,284,282,312,308,340,334,368,360,394,386,424,412,450,438,478,

%U 464,506,490,534,516,560,542,590,568,616,594,644,620,672

%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 28 ).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 1, 0, 0, 0, -1).

%F From _Colin Barker_, Feb 24 2016: (Start)

%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.

%F G.f.: -x^2*(1 -8*x -22*x^2 -36*x^3 -49*x^4 -54*x^5 -53*x^6 -48*x^7 -30*x^8 -20*x^9 -3*x^10) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).

%F (End)

%K sign,changed

%O 2,2

%A _N. J. A. Sloane_, Jul 14 2001