%I #14 Feb 17 2025 12:30:57
%S -1,5,16,28,40,52,64,76,88,100,112,122,136,148,160,170,184,194,208,
%T 218,232,242,256,264,280,290,304,312,328,336,352,360,376,384,400,406,
%U 424,432,448,454,472,478,496,502,520,526,544,548,568,574,592
%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 17 ).
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 1, 0, 0, 0, -1).
%F From _Colin Barker_, Feb 24 2016: (Start)
%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.
%F G.f.: -x^2*(1 -5*x -16*x^2 -28*x^3 -41*x^4 -47*x^5 -49*x^6 -43*x^7 -32*x^8 -20*x^9 -7*x^10 +x^11) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).
%F (End)
%K sign,changed
%O 2,2
%A _N. J. A. Sloane_, Jul 14 2001