login
Dimension of the space of weight n cuspidal newforms for Gamma_1( 7 ).
0

%I #11 May 02 2023 12:59:54

%S -1,0,1,3,5,7,9,11,13,15,17,17,21,23,25,25,29,29,33,33,37,37,41,39,45,

%T 45,49,47,53,51,57,55,61,59,65,61,69,67,73,69,77,73,81,77,85,81,89,83,

%U 93,89,97,91,101,95,105,99,109,103,113,105,117,111

%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 7 ).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%F From _Colin Barker_, Feb 24 2016: (Start)

%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.

%F G.f.: -x^2*(1 -x^2 -3*x^3 -6*x^4 -7*x^5 -9*x^6 -8*x^7 -7*x^8 -5*x^9 -2*x^10 +x^11) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).

%F (End)

%Y Cf. A016813 (bisection)

%K sign

%O 2,4

%A _N. J. A. Sloane_, Jul 14 2001