login
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 66 ).
0

%I #13 Aug 22 2019 12:18:12

%S 3,4,8,12,16,16,24,24,28,32,36,36,44,44,48,52,56,56,64,64,68,72,76,76,

%T 84,84,88,92,96,96,104,104,108,112,116,116,124,124,128,132,136,136,

%U 144,144,148,152,156,156,164,164

%N Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 66 ).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1).

%F a(n) = a(n-2)+a(n-3)-a(n-5) for n>6. G.f.: -x*(x^5 -4*x^4 -5*x^3 -5*x^2 -4*x- 3)/((x -1)^2*(x +1)*(x^2 +x +1)). [_Colin Barker_, Sep 27 2012]

%t LinearRecurrence[{0,1,1,0,-1},{3,4,8,12,16,16},50] (* _Harvey P. Dale_, Dec 16 2017 *)

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 10 2001