login
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 29 ).
4

%I #10 Aug 22 2019 12:18:12

%S 2,7,11,17,21,25,31,35,39,45,49,53,59,63,67,73,77,81,87,91,95,101,105,

%T 109,115,119,123,129,133,137,143,147,151,157,161,165,171,175,179,185,

%U 189,193,199,203,207,213,217,221,227,231

%N Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 29 ).

%H R. J. Mathar, <a href="/A063205/b063205.txt">Table of n, a(n) for n = 1..1000</a>

%H G. Martin, <a href="http://dx.doi.org/10.1016/j.jnt.2004.10.009">Dimensions of the spaces of cusp forms and newforms on Gamma_0(N) and Gamma_1(N)</a>, J. Numb. Theory 112 (2005) 298-331, Theorem 1

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).

%F G.f.: 2x-x^2*(-7-4*x-6*x^2+3*x^3) / ( (1+x+x^2)*(x-1)^2 ). - _R. J. Mathar_, Jul 15 2015

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 10 2001