login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 11 ).
2

%I #14 Dec 28 2024 11:35:19

%S 1,2,4,6,8,8,12,12,14,16,18,18,22,22,24,26,28,28,32,32,34,36,38,38,42,

%T 42,44,46,48,48,52,52,54,56,58,58,62,62,64,66,68,68,72,72,74,76,78,78,

%U 82,82

%N Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 11 ).

%H R. J. Mathar, <a href="/A063199/b063199.txt">Table of n, a(n) for n = 1..1000</a>

%H G. Martin, <a href="http://dx.doi.org/10.1016/j.jnt.2004.10.009">Dimensions of the spaces of cusp forms and newforms on Gamma_0(N) and Gamma_1(N)</a>, J. Numb. Theory 112 (2005) 298-331, Theorem 1.

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1).

%F G.f.: x -2*x^2*(-1-2*x-2*x^2-x^3+x^4) / ( (1+x)*(1+x+x^2)*(x-1)^2 ). - _R. J. Mathar_, Jul 15 2015

%t LinearRecurrence[{0,1,1,0,-1},{1,2,4,6,8,8},60] (* _Harvey P. Dale_, Dec 28 2024 *)

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jul 10 2001