login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).
19

%I #222 Dec 18 2024 09:22:06

%S 1,5,60,1105,27120,828250,30220800,1282031525,61999046400,

%T 3366961243750,202903221120000,13437880555850250,970217083619328000,

%U 75849500508999712500,6383483988812390400000,575440151532675686278125,55318762960656722780160000

%N a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).

%C Number of rooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges). [Vidal]

%C Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a pointed set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point. [Vidal]

%C Also, the asymptotic expansion of the Airy function Ai'(x)/Ai(x) = -sqrt(x) - 1/(4x) + Sum_{n>=2} (-1)^n a(n) (4x)^ (1/2-3n/2). [Praehofer]

%C Maple 6 gives the wrong asymptotics of Ai'(x)=AiryAi(1,x) as x->oo apart from the 3rd term. Therefore asympt(AiryAi(1,x/4)/AiryAi(x/4),x); reproduces only the value a(1)=1 correctly.

%C Number of closed linear lambda terms (see [Bodini, Gardy, Jacquot, 2013] and [N. Zeilberger, 2015] references). - _Pierre Lescanne_, Feb 26 2017

%C Proved (bijection) by O. Bodini, D. Gardy, A. Jacquot (2013). - _Olivier Bodini_, Mar 30 2018

%C The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - _N. J. A. Sloane_, Sep 17 2018

%H Reinhard Zumkeller, <a href="/A062980/b062980.txt">Table of n, a(n) for n = 0..100</a>

%H O. Bodini, D. Gardy, and A. Jacquot, <a href="https://doi.org/10.1016/j.tcs.2013.01.008">Asymptotics and random sampling for BCI and BCK lambda terms</a>, Theor. Comput. Sci. 502: 227-238 (2013).

%H Jørgen Ellegaard Andersen, Gaëtan Borot, Leonid O. Chekhov and Nicolas Orantin, <a href="https://arxiv.org/abs/1703.03307">The ABCD of topological recursion</a>, arXiv:1703.03307 [math-ph], 2017. [See Appendix A.1]

%H Laura Ciobanu and Alexander Kolpakov, <a href="https://arxiv.org/abs/1708.03842">Free subgroups of free products and combinatorial hypermaps</a>, arXiv:1708.03842 [math.CO], 2017.

%H P. Cvitanovic, B. Lautrup and R. B. Pearson, <a href="https://cns.gatech.edu/~predrag/papers/PRD18-78.pdf">The number and weights of Feynman diagrams</a>, Phys. Rev. D18, (1978), 1939-1949, (eq 3.14 and fig 1b). <a href="https://doi.org/10.1103/PhysRevD.18.1939">DOI:10.1103/PhysRevD.18.1939</a>

%H Bertrand Eynard, <a href="http://ipht.cea.fr/Docspht/articles/t04/086/public/1126-6708_2004_11_031.pdf">Topological expansion for the 1-hermitian matrix model correlation functions</a>, Journal of High Energy Physics 11 (2004). [See Eq. (5.12) and Appendix A]

%H Steven R. Finch, <a href="/A062980/a062980.pdf">Shapes of binary trees</a>, June 24, 2004. [Cached copy, with permission of the author]

%H Steven R. Finch, <a href="https://arxiv.org/abs/2408.12440">An exceptional convolutional recurrence</a>, arXiv:2408.12440 [math.CO], 2024.

%H Éric Fusy, Luca Lionni, Adrian Tanasa, <a href="https://arxiv.org/abs/1810.02146">Combinatorial study of graphs arising from the Sachdev-Ye-Kitaev model</a>, arXiv:1810.02146 [math.CO], 2018.

%H Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, <a href="http://arxiv.org/abs/1112.0643">How big is BCI fragment of BCK logic</a>, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. [From _N. J. A. Sloane_, Feb 21 2012]

%H Kristian Gustavsson and Bernhard Mehlig, <a href="https://arxiv.org/abs/1412.4374">Statistical models for spatial patterns of heavy particles in turbulence</a>, arxiv:1412.4374 [physics.flu-dyn], 2014-2016. [See Figure 14]

%H M. J. Kearny and R. J. Martin, <a href="https://doi.org/10.1088/1751-8113/49/19/195001">Normalized functionals of first passage Brownian motion and a curious connection with the maximal relative height of fluctuating interfaces</a>, J. Phys. A, Math. Theor. 49, No. 19, Article ID 195001, 20 p. (2016).

%H George Kaye, <a href="https://www.georgejkaye.com/pages/lambda-visualiser/docs/2019-04-08-final-report.pdf">A visualiser for linear lambda-terms as 3-valent rooted maps</a>, University of Birmingham (UK, 2019).

%H S. Janson, <a href="http://dx.doi.org/10.1002/rsa.10074">The Wiener index of simply generated random trees</a>, Random Structures Algorithms 22 (2003) 337-358.

%H Michael J. Kearney, Satya N. Majumdar and Richard J. Martin, <a href="http://arxiv.org/abs/0706.2038">The first-passage area for drifted Brownian motion and the moments of the Airy distribution</a>, arXiv:0706.2038 [cond-mat.stat-mech], 2007. [a(n) = 8^n * K_n from Eq. (3)]

%H Pierre Lescanne, <a href="https://arxiv.org/abs/1702.03085">Quantitative aspects of linear and affine closed lambda terms</a>, arXiv:1702.03085 [cs.DM], 2017. Also in <a href="https://doi.org/10.1145/3173547">ACM Transactions on Computational Logic (TOCL 2019)</a>, Vol. 19, No. 2, Article No. 9.

%H R. J. Martin and M. J. Kearney, <a href="http://dx.doi.org/10.1007/s00010-010-0051-0">An exactly solvable self-convolutive recurrence</a>, Aequat. Math., 80 (2010), 291-318. See p. 292.

%H NIST Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/9.5">Airy Functions</a>.

%H A. N. Stokes, <a href="https://doi.org/10.1017/S0004972700005219">Continued fraction solutions of the Riccati equation</a>, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.

%H Paul Tarau and Valeria de Paiva, <a href="https://arxiv.org/abs/2009.10241">Deriving Theorems in Implicational Linear Logic, Declaratively</a>, arXiv:2009.10241 [cs.LO], 2020. See also <a href="https://vcvpaiva.github.io/includes/pubs/2020-tarau.pdf">Github</a>, (2020).

%H Samuel Vidal and Michel Petitot, <a href="http://www.cafemath.fr/articles/VidalPetitot09-1.pdf">Counting Rooted and Unrooted Triangular Maps</a>, Journal of Nonlinear Systems and Applications (2009) 151-154.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AiryFunctions.html">Airy Functions</a>, contains the definitions of Ai(x), Bi(x).

%H Noam Zeilberger, <a href="http://arxiv.org/abs/1509.07596">Counting isomorphism classes of beta-normal linear lambda terms</a>, arXiv:1509.07596 [cs.LO], 2015.

%H Noam Zeilberger, <a href="https://arxiv.org/abs/1512.06751">Linear lambda terms as invariants of rooted trivalent maps</a>, arXiv preprint arXiv:1512.06751 [cs.LO], 2015.

%H Noam Zeilberger, <a href="https://arxiv.org/abs/1804.10540">A theory of linear typings as flows on 3-valent graphs</a>, arXiv:1804.10540 [cs.LO], 2018.

%H Noam Zeilberger, <a href="https://arxiv.org/abs/1803.10080">A Sequent Calculus for a Semi-Associative Law</a>, arXiv preprint 1803.10030 [math.LO], March 2018 (A revised version of a 2017 conference paper).

%H Noam Zeilberger, <a href="https://vimeo.com/289907363">A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video)</a>, <a href="https://vimeo.com/289910554">Part 2</a>, Rutgers Experimental Math Seminar, Sep 13 2018.

%H Noam Zeilberger and Alain Giorgetti, <a href="http://arxiv.org/abs/1408.5028">A correspondence between rooted planar maps and normal planar lambda terms</a>, arXiv:1408.5028 [cs.LO], 2014-2015; Logical Methods in Computer Science, vol. 11 (3:22), 2015, pp. 1-39.

%F With offset 1, then a(1) = 1 and, for n > 1, a(n) = (6*n-8)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k) [Praehofer] [Martin and Kearney].

%F a(n) = (6/Pi^2)*Integral_{x=0..oo} ((4*x)^(3*n/2)/(Ai(x)^2 + Bi(x)^2)) dt. - _Vladimir Reshetnikov_, Sep 24 2013

%F a(n) ~ 3 * 6^n * n! / Pi. - _Vaclav Kotesovec_, Jan 19 2015

%F 0 = 6*x^2*y' + x*y^2 + (4*x-1)*y + 1, where y(x) = Sum_{n>=0} a(n)*x^n. - _Gheorghe Coserea_, Apr 02 2017

%F From _Peter Bala_, May 21 2017: (Start)

%F G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... See Stokes.

%F x*A(x) = B(x)/(1 + 2*B(x)), where B(x) = x + 7*x^2 + 84*x^3 + 1463*x^4 + ... is the o.g.f. of A172455.

%F A(x) = 1/(1 + 2*x - 7*x/(1 - 5*x/(1 - 13*x/(1 - 11*x/(1 - ... - (6*n + 1)*x/(1 - (6*n - 1)*x/(1 - .... (End)

%e 1 + 5*x + 60*x^2 + 1105*x^3 + 27120*x^4 + 828250*x^5 + 30220800*x^6 + ...

%p a:= proc(n) option remember; `if`(n<2, 4*n+1,

%p 6*n*a(n-1) +add(a(k)*a(n-k-1), k=1..n-2))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Mar 31 2017

%t max = 16; f[y_] := -Sqrt[x] - 1/(4*x) + Sum[(-1)^n*a[n]*(4*x)^(1/2 - 3*(n/2)), {n, 2, max}] /. x -> 1/y^2; s[y_] := Normal[ Series[ AiryAiPrime[x] / AiryAi[x], {x, Infinity, max + 7}]] /. x -> 1/y^2; sol = SolveAlways[ Simplify[ f[y] == s[y], y > 0], y] // First; Join[{1, 5}, Table[a[n], {n, 3, max}] /. sol] (* _Jean-François Alcover_, Oct 09 2012, from Airy function asymptotics *)

%t a[0] = 1; a[n_] := a[n] = (6*(n-1)+4)*a[n-1] + Sum[a[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Nov 29 2013, after _Vladimir Reshetnikov_ *)

%o (PARI) {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6*k - 8) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* _Michael Somos_, Jul 24 2011 */

%o (Haskell)

%o a062980 n = a062980_list !! n

%o a062980_list = 1 : 5 : f 2 [5,1] where

%o f u vs'@(v:vs) = w : f (u + 1) (w : vs') where

%o w = 6 * u * v + sum (zipWith (*) vs_ $ reverse vs_)

%o vs_ = init vs

%o -- _Reinhard Zumkeller_, Jun 03 2013

%o (Python)

%o from sympy.core.cache import cacheit

%o @cacheit

%o def a(n): return n*4 + 1 if n<2 else 6*n*a(n - 1) + sum(a(k)*a(n - k - 1) for k in range(1, n - 1))

%o print([a(n) for n in range(21)]) # _Indranil Ghosh_, Aug 09 2017

%Y Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

%Y Pointed version of A012114. Connected pointed version of A012115. [Xrefs A012114 and A012115 are probably wrong. - _Vaclav Kotesovec_, Jan 27 2015]

%Y Cf. A060506, A060507, A094199, A121350, A121352, A005133, A172455.

%K nonn,nice,easy,changed

%O 0,2

%A Michael Praehofer (praehofer(AT)ma.tum.de), Jul 24 2001

%E Entry revised by _N. J. A. Sloane_ based on comments from _Samuel A. Vidal_, Mar 30 2007