login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062895
Numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.
9
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 24, 26, 31, 33, 37, 39, 42, 44, 51, 55, 58, 62, 66, 71, 73, 77, 79, 85, 88, 93, 97, 99, 101, 107, 111, 113, 115, 117, 121, 122, 123, 129, 131, 141, 143, 149, 151, 155, 157, 158, 159, 161, 165, 167, 169, 171, 177, 178, 179
OFFSET
1,2
COMMENTS
The sequence s of numbers k for which R(d(k)) = d(R(k)) first differs at s(80) = 262 while a(80) = 252. - Mohammed Yaseen, Mar 24 2023
LINKS
Mohammed Yaseen, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
EXAMPLE
d(24) = 8 and also d(42) = 8, hence both are members.
MATHEMATICA
Select[Range[180], DivisorSigma[0, #]==DivisorSigma[0, FromDigits[Reverse[IntegerDigits[#]]]] &] (* Jayanta Basu, May 17 2013 *)
PROG
(PARI) { n=0; for (m=1, 10^9, x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if (numdiv(m) == numdiv(r), write("b062895.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 12 2009
(PARI) isok(k) = numdiv(fromdigits(Vecrev(digits(k)))) == numdiv(k); \\ Michel Marcus, Jul 06 2021
(Python)
from sympy import divisor_count as d
def ok(n): return d(n) == d(int(str(n)[::-1]))
print([k for k in range(1, 180) if ok(k)]) # Michael S. Branicky, Mar 24 2023
CROSSREFS
Cf. A000005 (d), A004086 (R), A002113 (subsequence), A085329.
Sequence in context: A289351 A362038 A171550 * A085869 A068892 A106801
KEYWORD
base,nonn,easy
AUTHOR
Amarnath Murthy, Jun 30 2001
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Jun 30 2001
STATUS
approved