login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of number of permutations by barycenter.
10

%I #25 Jul 31 2018 16:55:47

%S 1,1,2,1,4,1,1,4,14,4,1,1,5,31,46,31,5,1,1,6,66,146,282,146,66,6,1,1,

%T 7,134,392,1289,1394,1289,392,134,7,1,1,8,267,960,4859,7736,12658,

%U 7736,4859,960,267,8,1,1,9,529,2235,16615,34659,85831,83122,85831,34659,16615,2235,529,9,1

%N Triangle of number of permutations by barycenter.

%C The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects.

%H Alois P. Heinz, <a href="/A062866/b062866.txt">Rows n = 0..20, flattened</a>

%F From _Alois P. Heinz_, Jul 31 2018: (Start)

%F T(n,k) = T(n,-k).

%F Sum_{k>=0} T(n,k) = A179566(n). (End)

%e (1,3,2,5,7,6,4) has difference (0,1,-1,1,2,0,-3) and signs (0,1,-1,1,1,0,-1) with total 1. This is one of 1289 such permutations of degree 7.

%e Triangle begins:

%e : 1 ;

%e : 1 ;

%e : 2 ;

%e : 1, 4, 1 ;

%e : 1, 4, 14, 4, 1 ;

%e : 1, 5, 31, 46, 31, 5, 1 ;

%e : 1, 6, 66, 146, 282, 146, 66, 6, 1 ;

%e : 1, 7, 134, 392, 1289, 1394, 1289, 392, 134, 7, 1 ;

%e : 1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1 ;

%p b:= proc(s, t) option remember; (n-> `if`(n=0, x^t,

%p add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b({$1..n}, 0)):

%p seq(T(n), n=0..11); # _Alois P. Heinz_, Jul 31 2018

%t row[n_] := Sort[Tally[Total[Sign[# - Range[n]]]& /@ Permutations[Range[n]] ]][[All, 2]]; Array[row, 9] // Flatten (* _Jean-François Alcover_, Oct 07 2016 *)

%Y Columns k=0-4 give: A062868, A179562, A169934, A179564, A179565.

%Y Row sums give A000142.

%Y Cf. A062867, A179566.

%K nice,nonn,tabf

%O 0,3

%A _Olivier Gérard_, Jun 26 2001