login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Centered 10-gonal numbers.
41

%I #144 Aug 01 2024 11:58:47

%S 1,11,31,61,101,151,211,281,361,451,551,661,781,911,1051,1201,1361,

%T 1531,1711,1901,2101,2311,2531,2761,3001,3251,3511,3781,4061,4351,

%U 4651,4961,5281,5611,5951,6301,6661,7031,7411,7801,8201,8611,9031,9461,9901,10351,10811

%N Centered 10-gonal numbers.

%C Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - _Amarnath Murthy_, Dec 11 2003

%C All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006

%C Centered decagonal numbers. - _Omar E. Pol_, Oct 03 2011

%C The partial sums of this sequence give A004466. - _Leo Tavares_, Oct 04 2021

%C The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - _Magus K. Chu_, Sep 12 2022

%C Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - _Klaus Purath_, Oct 30 2022

%C All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - _Klaus Purath_, Oct 17 2023

%H T. D. Noe, <a href="/A062786/b062786.txt">Table of n, a(n) for n = 1..1000</a>

%H Leo Tavares, <a href="/A062786/a062786.jpg">Illustration: Pentagonal Stars</a>.

%H Leo Tavares, <a href="/A062786/a062786_1.jpg">Illustration: Mid-section Stars</a>.

%H Leo Tavares, <a href="/A062786/a062786_2.jpg">Illustration: Mid-section Star Pillars</a>.

%H Leo Tavares, <a href="/A062786/a062786_3.jpg">Illustration: Trapezoidal Rays</a>.

%H R. Yin, J. Mu, and T. Komatsu, <a href="https://doi.org/10.20944/preprints202407.2280.v1">The p-Frobenius Number for the Triple of the Generalized Star Numbers</a>, Preprints 2024, 2024072280. See p. 2.

%H <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 5*n*(n-1) + 1.

%F From _Gary W. Adamson_, Dec 29 2007: (Start)

%F Binomial transform of [1, 10, 10, 0, 0, 0, ...];

%F Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)

%F a(n) = 10*n + a(n-1) - 10; a(1)=1. - _Vincenzo Librandi_, Aug 07 2010

%F G.f.: x*(1+8*x+x^2) / (1-x)^3. - _R. J. Mathar_, Feb 04 2011

%F a(n) = A124080(n-1) + 1. - _Omar E. Pol_, Oct 03 2011

%F a(n) = A101321(10,n-1). - _R. J. Mathar_, Jul 28 2016

%F a(n) = A028387(A016861(n-1))/5 for n > 0. - _Art Baker_, Mar 28 2019

%F E.g.f.: (1+5*x^2)*exp(x) - 1. - _G. C. Greubel_, Mar 30 2019

%F Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - _Vaclav Kotesovec_, Jul 23 2019

%F From _Amiram Eldar_, Jun 20 2020: (Start)

%F Sum_{n>=1} a(n)/n! = 6*e - 1.

%F Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)

%F a(n) = A005891(n-1) + 5*A000217(n-1). - _Leo Tavares_, Jul 14 2021

%F a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - _Leo Tavares_, Sep 06 2021

%F From _Leo Tavares_, Oct 06 2021: (Start)

%F a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.

%F a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.

%F a(n) = A060544(n) + A000217(n-1). (End)

%F From _Leo Tavares_, Oct 31 2021: (Start)

%F a(n) = A016754(n-1) + 2*A000217(n-1).

%F a(n) = A016754(n-1) + A002378(n-1).

%F a(n) = A069099(n) + 3*A000217(n-1).

%F a(n) = A069099(n) + A045943(n-1).

%F a(n) = A003215(n-1) + 4*A000217(n-1).

%F a(n) = A003215(n-1) + A046092(n-1).

%F a(n) = A001844(n-1) + 6*A000217(n-1).

%F a(n) = A001844(n-1) + A028896(n-1).

%F a(n) = A005448(n) + 7*A000217(n).

%F a(n) = A005448(n) + A024966(n). (End)

%F From _Klaus Purath_, Oct 30 2022: (Start)

%F a(n) = a(n-2) + 10*(2*n-3).

%F a(n) = 2*a(n-1) - a(n-2) + 10.

%F a(n) = A135705(n-1) + n.

%F a(n) = A190816(n) - n.

%F a(n) = 2*A005891(n-1) - 1. (End)

%t FoldList[#1+#2 &, 1, 10Range@ 45] (* _Robert G. Wilson v_, Feb 02 2011 *)

%t 1+5*Pochhammer[Range[50]-1, 2] (* _G. C. Greubel_, Mar 30 2019 *)

%o (PARI) j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j

%o (PARI) for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ _Harry J. Smith_, Aug 11 2009

%o (Magma) [1+5*n*(n-1): n in [1..50]]; // _G. C. Greubel_, Mar 30 2019

%o (Sage) [1+5*rising_factorial(n-1, 2) for n in (1..50)] # _G. C. Greubel_, Mar 30 2019

%o (GAP) List([1..50], n-> 1+5*n*(n-1)) # _G. C. Greubel_, Mar 30 2019

%o (Python) def a(n): return(5*n**2-5*n+1) # _Torlach Rush_, May 10 2024

%Y Cf. A001263, A124080, A101321, A028387, A016861, A003154, A005891, A000217, A004466, A144390, A000326, A060544.

%Y Cf. also A016754, A002378, A069099, A045943, A003215, A046092, A001844, A028896, A005448, A024966, A082970.

%K easy,nonn

%O 1,2

%A _Jason Earls_, Jul 19 2001

%E Better description from _Terrel Trotter, Jr._, Apr 06 2002