%I #10 Oct 22 2015 14:28:47
%S 2,17,590,105824,69300688,194965719104,2426497181267968,
%T 177803451495373322240,52976870608237776911450112,
%U 110350007913361454793759188320256
%N Number of cyclic subgroups of general affine group over GF(2), AGL(n,2).
%D V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
%H V. Jovovic, <a href="/A062766/a062766.pdf">Cycle index of general affine group AGL(n,2)</a>
%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F a(n) = Sum_{d} |{g element of AGL(n, 2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.
%e a(3) = 1/phi(1)+91/phi(2)+224/phi(3)+420/phi(4)+224/phi(6)+384/phi(7) = 590.
%Y Cf. A062250.
%K nonn
%O 1,1
%A _Vladeta Jovovic_, Jul 13 2001