login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cyclic subgroups of general affine group over GF(2), AGL(n,2).
18

%I #10 Oct 22 2015 14:28:47

%S 2,17,590,105824,69300688,194965719104,2426497181267968,

%T 177803451495373322240,52976870608237776911450112,

%U 110350007913361454793759188320256

%N Number of cyclic subgroups of general affine group over GF(2), AGL(n,2).

%D V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

%H V. Jovovic, <a href="/A062766/a062766.pdf">Cycle index of general affine group AGL(n,2)</a>

%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>

%F a(n) = Sum_{d} |{g element of AGL(n, 2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.

%e a(3) = 1/phi(1)+91/phi(2)+224/phi(3)+420/phi(4)+224/phi(6)+384/phi(7) = 590.

%Y Cf. A062250.

%K nonn

%O 1,1

%A _Vladeta Jovovic_, Jul 13 2001