Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #72 Aug 03 2024 19:26:21
%S 0,1,15,66,190,435,861,1540,2556,4005,5995,8646,12090,16471,21945,
%T 28680,36856,46665,58311,72010,87990,106491,127765,152076,179700,
%U 210925,246051,285390,329266,378015,431985,491536,557040,628881,707455,793170,886446,987715
%N a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.
%C Number of edges in the join of two complete graphs of order n^2 and n, K_n^2 * K_n - _Roberto E. Martinez II_, Jan 07 2002
%C The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-5)(P(4,1)-(-1)^k P(4,2k+1))|. - _Peter Luschny_, Jul 12 2009
%C Define an infinite symmetric array by T(n,m) = n*(n-1) + m for 0 <= m <= n and T(n,m) = T(m,n), n >= 0. Then a(n) is the sum of terms in the top left (n+1) X (n+1) subarray: a(n) = Sum_{r=0..n} Sum_{c=0..n} T(r,c). - _J. M. Bergot_, Jul 05 2013
%C a(n) is the sum of all positive numbers less than A002378(n). - _J. M. Bergot_, Aug 30 2013
%C Except the first term, these are triangular numbers that remain triangular when divided by their index, e.g., 66 divided by 11 gives 6. - _Waldemar Puszkarz_, Sep 14 2017
%D T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
%H Harry J. Smith, <a href="/A062392/b062392.txt">Table of n, a(n) for n = 0..1000</a>
%H Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
%F a(n) = Sum_{i=0..n} A007588(i) for n > 0. - _Jonathan Vos Post_, Mar 15 2006
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - _Harvey P. Dale_, Oct 19 2011
%F G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - _Harvey P. Dale_, Oct 19 2011
%F a(n) = A000384(A000217(n)). - _Bruno Berselli_, Jan 31 2014
%F a(n) = A110450(n) - A002378(n). - _Gionata Neri_, May 13 2015
%F Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - _Amiram Eldar_, Jan 22 2024
%F a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - _Yasser Arath Chavez Reyes_, Jul 22 2024
%e From _Bruno Berselli_, Oct 30 2017: (Start)
%e After 0:
%e 1 = -(1) + (2);
%e 15 = -(1 + 2) + (3 + 4 + 5 + 2*3);
%e 66 = -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
%e 190 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
%e 435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
%p a := n -> (2*n^2+n^3-1)*n/2; # _Peter Luschny_, Jul 12 2009
%t Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* _Harvey P. Dale_, Oct 19 2011 *)
%o (PARI) { a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ _Harry J. Smith_, Aug 07 2009
%Y Cf. A000538, A000583. A062393 provides the result for 5th powers, A011934 for cubes, A000217 for squares, A001057 (unsigned) for nonnegative integers, A000035 (offset) for 0th powers.
%Y Cf. A000217, A000384, A007588.
%Y Cf. A236770 (see crossrefs).
%K nonn,easy
%O 0,3
%A _Henry Bottomley_, Jun 21 2001