login
Primes whose sum of digits is 8.
13

%I #23 Mar 09 2022 22:49:12

%S 17,53,71,107,233,251,431,503,521,701,1061,1151,1223,1511,1601,2141,

%T 2213,2411,3023,3041,3203,3221,4013,4211,5003,5021,6011,6101,7001,

%U 10007,10061,10133,10151,10223,10313,10331,10601,11213,11321,11411

%N Primes whose sum of digits is 8.

%H Alois P. Heinz, <a href="/A062343/b062343.txt">Table of n, a(n) for n = 1..42745</a> (first 500 terms from Vincenzo Librandi)

%F Intersection of A000040 (primes) and A052222 (digit sum 8). - _M. F. Hasler_, Mar 09 2022

%e 1151 belongs to the sequence since it is a prime with sum of digits = 8.

%t Select[Prime[Range[500000]], Total[IntegerDigits[#]]==8 &] (* _Vincenzo Librandi_, Jul 08 2014 *)

%o (Magma) [p: p in PrimesUpTo(20000) | &+Intseq(p) eq 8]; // _Vincenzo Librandi_, Jul 08 2014

%o From _M. F. Hasler_, Mar 09 2022: (Start)

%o (PARI) select( {is_A062343(p, s=8)=sumdigits(p)==s&&isprime(p)}, primes([1, 12345])) \\ 2nd optional parameter for similar sequences with other digit sums.

%o (PARI) {A062343_upto_length(L, s=8, a=List(), u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Vecrev(a)} \\ (End)

%Y Cf. A000040 (primes), A007953 (sum of digits), A052222 (digit sum = 8).

%Y Cf. A062339 (same for digit sum s = 4), A062341 (s = 5), A062337 (s = 7), A107579 (s = 10), and others listed in A244918 (s = 68).

%Y Subsequence of A062342 (primes with digit sum divisible by 8).

%K nonn,base,easy

%O 1,1

%A _Amarnath Murthy_, Jun 21 2001

%E More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001