login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fifth (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre).
2

%I #16 Sep 08 2022 08:45:03

%S 1,45,1350,34650,831600,19459440,454053600,10702692000,256864608000,

%T 6307453152000,158947819430400,4118193503424000,109818493424640000,

%U 3015784780968960000,85303626661693440000

%N Fifth (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre).

%H Harry J. Smith, <a href="/A062262/b062262.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: (1+32*x+168*x^2+224*x^3+70*x^4)/(1-x)^13.

%F a(n) = A062140(n+4, 4).

%F a(n) = (n+4)!*binomial(n+8, 8)/4!.

%F If we define f(n,i,x)= Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)* Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-4) = (-1)^n*f(n,4,-9), (n>=4). - _Milan Janjic_, Mar 01 2009

%t Table[(n+4)!*Binomial[n+8, 8]/4!, {n, 0, 30}] (* _G. C. Greubel_, May 13 2018 *)

%o (PARI) { f=6; for (n=0, 100, f*=n + 4; write("b062262.txt", n, " ", f*binomial(n + 8, 8)/24) ) } \\ _Harry J. Smith_, Aug 03 2009

%o (Magma) [Factorial(n+4)*Binomial(n+8,8)/24: n in [0..30]]; // _G. C. Greubel_, May 13 2018

%Y Cf. A001720, A062199, A062260, A062261.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Jun 19 2001