login
Number of cyclic subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).
4

%I #6 May 10 2013 12:44:47

%S 1,5,79,6974,2037136,2890467344,14011554132032,325330342132674560,

%T 27173394819858612320256,10158190320726534408118452224,

%U 13156630408268153048253765001412608,80280189722884518774834501142737770774528

%N Number of cyclic subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).

%D V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

%H V. Jovovic, <a href="/A062766/a062766.pdf">Cycle index of general linear group GL(n,2)</a>

%F a(n) = Sum_{d} |{g element of A_n(2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.

%e a(3) = 1/phi(1)+21/phi(2)+56/phi(3)+42/phi(4)+48/phi(7) = 79.

%Y Cf. A053651 (unlabeled case), A053658, A053660, A053718, A053722, A053725, A053771-A053777, A058502, A062552, A062240.

%K nonn

%O 1,2

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001

%E More terms from _Vladeta Jovovic_, Jul 04 2001