Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Mar 12 2021 22:24:42
%S 1,1,1,-1,-1,0,1,2,0,-2,-3,-1,4,4,1,-4,-6,-1,5,8,1,-8,-10,-2,11,14,4,
%T -14,-19,-4,17,24,4,-23,-31,-6,31,40,9,-38,-50,-10,46,63,11,-60,-79,
%U -16,77,98,21,-92,-122,-24,112,150,28,-140,-183,-36,173,224,46,-208,-273,-54,249,329,62,-304,-396,-78,370
%N McKay-Thompson series of class 18D for the Monster group.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C Number 7 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - _Michael Somos_, Jul 21 2014
%C There is a typo in the entry for this q-series in Table I of Yang 2004. The exponent of 18 should be 3. - _Michael Somos_, Jul 21 2014
%C A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_0(18). [Yang 2004] - _Michael Somos_, Jul 21 2014
%H Seiichi Manyama, <a href="/A062242/b062242.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H J. McKay and A. Sebbar, <a href="http://dx.doi.org/10.1007/s002080000116">Fuchsian groups, automorphic functions and Schwarzians</a>, Math. Ann., 318 (2000), 255-275.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H Y. Yang, <a href="http://dx.doi.org/10.1112/S0024609304003510">Transformation formulas for generalized Dedekind eta functions</a>, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F G.f.: Product_{k>0} (1 - x^(6*k - 3))^3 / (1 - x^(2*k-1)). - _Michael Somos_, Mar 17 2004
%F Expansion of chi(-q^3)^3 / chi(-q) in powers of q where chi() is a Ramanujan theta function.
%F Expansion of q^(1/3) * c(q) / c(q^2) in powers of q where c() is a cubic AGM theta function. - _Michael Somos_, Oct 17 2006
%F Expansion of q^(1/3) * eta(q^2) * eta(q^3)^3 / (eta(q) * eta(q^6)^3) in powers of q. - _Michael Somos_, Mar 05 2004
%F Euler transform of period 6 sequence [ 1, 0, -2, 0, 1, 0, ...]. - _Michael Somos_, Mar 05 2004
%F Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 2*u +v^2 - u^2*v. - _Michael Somos_, Mar 17 2004
%F Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - v + v^2) * u^3 - (4 + 2*v + v^2) * v. - _Michael Somos_, Aug 11 2007
%F Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u^6 + v^6 - u^5*v^5 + 5*u^4*v^4 - 20*u^3*v^3 + 20*u^2*v^2 - 16*u*v + 5*u^2*v^5 + 5*u^5*v^2 - 10*u^4*v - 10*u*v^4. - _Michael Somos_, Aug 11 2007
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128128.
%F G.f.: 1 + x*(1+x)/(1 + x^2*(1+x^2)/(1 + x^3*(1+x^3)/(1 + x^4*(1+x^4)/(1 + x^5*(1+x^5)/(1 + ...))))), a continued fraction. - _Paul D. Hanna_, Jul 09 2013
%F a(n) = (-1)^n * A062244(n). a(2*n) = A132179(n). a(2*n + 1) = A092848(n).
%F Convolution inverse of A092848.
%e G.f. = 1 + x + x^2 - x^3 - x^4 + x^6 + 2*x^7 - 2*x^9 - 3*x^10 - x^11 + 4*x^12 + ...
%e T18D = 1/q + q^2 + q^5 - q^8 - q^11 + q^17 + 2*q^20 - 2*q^26 - 3*q^29 - x^32 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3]^3 / (QPochhammer[ x] QPochhammer[ x^6]^3), {x, 0, n}]; (* _Michael Somos_, Jul 21 2014 *)
%o (PARI) {a(n) = local(A,m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=3; A = subst(A, x, x^3) / x; A = (x*A * (4 + 2*A + A^2) / (1 - A + A^2))^(1/3)); polcoeff(A, n))};
%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^3), n))};
%o (PARI) /* Continued Fraction Expansion: */
%o {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1 + x^(n-k+1)*(1 + x^(n-k+1))/(CF+x*O(x^n))); polcoeff(CF, n)} \\ _Paul D. Hanna_, Jul 09 2013
%Y Cf. A062244, A092848, A132179.
%K sign
%O 0,8
%A _N. J. A. Sloane_, Jun 30 2001